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Chapter 1

Introduction

The goal of the project was to develop and compare a number of algorithms for inferring
what type of transport an individual is using, based only on data collected using their
smartphone’s sensors. In this context the term algorithm refers to the whole process of
generating features from sensor data and then classifying instances of those features into
transportation categories.

My preliminary research and testing showed that, in general, the choice of machine
learning algorithm at the classification step makes little difference in terms of overall
accuracy. Informed by this, I focused my efforts on developing and testing features for
different sensor types. The most accurate classifier produced by the project has recall1

equal to 0.978.
Figure 1.1 shows the main application view when idle. This application was, among

other things, used as a tool for verifying data-set correctness and exploring different
feature definitions.

1.1 Original Ideas for Classification Features

In addition to Global Positioning System (GPS) location and accelerometer data, the
Android platform provides orientation data (derived from the accelerometer), light level
data, magnetic field strength data and GPS satellite data. In preparation, I read a
number of papers and did not find any which tested classifiers derived from light level,
magnetic field strength or GPS satellite data sources. Consequently, I thought it would be
interesting to develop such classifiers myself. When used to produce appropriate features
of my own definition, some of these sources turn out to enable respectable inferences.

Classifiers using only orientation data features have recalls of up to 0.959. Other
features such as GPS metadata (number of visible satellites and mean signal Signal to
Noise Ratio (SNR)) also prove to be useful. Light level data turns out to be quite useless,
primarily because the rate at which light level events are generated by the Android
Operating System (OS) on the devices used is a few per hour, so there is very little data
for classifiers to train or infer with.

It is tempting to hypothesise that the mean magnetic field strength may be a useful

1Metrics are defined fully in the evaluation chapter; for now, knowledge that this ranges from zero to
one and that a value of one is desirable should suffice.
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Figure 1.1: Inference Framework main view showing the data-set ground truths (green:
bike, orange: bus, red: car, blue: train, yellow: walk). Newer routes are rendered on top
of older routes.

feature on the basis that enclosed vehicles (cars, buses and trains) would act as Fara-
day cages, while cycling and walking would not. This cannot be the case, however, as
Faraday cages can only shield against dynamic fields; static fields will pass. Surpris-
ingly, I found that using only the mean field strength, a classifier with recall of 0.683 can
be created. When other magnetic field strength features are added this reaches 0.715.
This may be explained by local magnetic field variation across vehicle types due perhaps
to the presence of electric motors on trains, or to the magnetisation of ferrous vehicle
components.

1.2 Summary of Results

A summary of the findings in terms of the inference accuracies possible with different
data sources is shown in figure 1.2.

1.3 Motivation

There are numerous ubiquitous computing applications which need inferred knowledge of
transportation mode to function; requiring the user to manually input the transportation
mode is too much to ask. While more accurate inferences may be possible using external
sensors, having these as requirements prohibits widespread adoption.

2



Figure 1.2: Chart comparing inference accuracy of sensor data sources.

1.3.1 Personal energy metering

A personal energy meter records an individual’s daily energy usage, due for example,
to use of building amenities, transportation, or consumption of goods. The idea is to
promote changes in user habits through review of usage. The visualisations provided by
the energy metering system help to provide quantitative and qualitative feedback that
cannot be obtained by other means. Froehlich et al. [5] demonstrate the potential in
such systems by semi-automatically tracking transportation behaviours and providing
primarily qualitative feedback.

If the mode of transportation is known along with the number of people using it then
all that must be done to obtain an estimate of the individual’s carbon footprint is to
multiply the distance travelled by the average CO2 produced per mile for that mode of
transport and divide by the vehicle occupancy.

1.3.2 Real-time traffic reporting and routing

Another application is that of an automated and crowd sourced congestion level inference
system. It would work by having road users run a smartphone application that anony-
mously reports average speeds over a short interval, along with the road location that
the measurement was taken on. A central system would maintain estimates of national
traffic concentrations. Such data would be available in a form such that internet enabled
satellite navigation devices can use the data to reroute based on real-time estimates of the
road network congestion/link states, in a similar fashion to systems such as the internet
itself.
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Provided users could be assured of anonymity the idea works in terms of cost and
reward; the majority of users would see their average journey times decreased with little
to no effort. There is no barrier to adoption as there is no requirement for all road users
to participate for it to be useful.

Transportation mode inference fits into this because the system would need to distin-
guish between pedestrians and cars stuck in traffic so as not to falsely report congestion.
The main selling points (convenience and efficiency) of the system would be undermined
by requiring users to manually input changes of transportation mode. Knowledge of
transportation mode would also be needed if the system were to be extended to include
reporting of estimated arrival times of public transport vehicles. For example, if the
transportation mode is identified as bus then the system would go ahead and infer what
bus route and journey time the rider is on and use this with location data to report
estimated arrival and departure times for remaining stops on the route.

The benefit of such a scheme has been demonstrated by Thiagarajan et al. [6]. A
simulation of the Chicago transit network found that expected wait times would be
reduced by 2 minutes with as little as 5% of transit riders actually crowd-sourcing data
for the system. With 20% of users sourcing data, the mean wait time would be reduced
from 9 down to 3 minutes.

1.3.3 General purpose context awareness

The final use case is the more general context awareness one. This includes smartphone
behaviours such as automatically switching to loudspeaker mode when the phone is in a
moving car and being used by the driver. Determining whether the phone is in use by
the driver may be tricky, but orientation data may help with this; if the phone is oriented
with the screen perpendicular to the ground it is likely to be located in a car-mount and
thus be the driver’s phone.

1.4 Power Consumption

With all of the above applications power usage is a limiting factor that must be considered.
GPS sensors in particular are known to reduce battery run times significantly if not used
with care. Lu et al. [7] have developed a framework for continuous sensing on both
the Apple iPhone and Nokia N95 that exploits patterns in user behaviour to reduce
average power consumption through duty cycling and smart admission control. This uses
inferences made from low power draw sensor data features (e.g. accelerometer magnitude)
to determine when to activate higher power sensors (e.g. GPS) and/or more CPU intensive
feature generation (e.g. Fast Fourier Transform (FFT) accelerometer coefficients).

Power consumption is considered in this project by generating and testing classifiers
with and without GPS data so that the benefit in terms of accuracy increase can be
seen. Whether or not GPS data would then be used in an application would depend on
the specific cost-benefit in that scenario. For the personal energy metering application
GPS data is required to determine the distance travelled anyway, so there is no benefit
to battery run-time in not also using it for the classification.
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Chapter 2

Preparation

2.1 Overall Structure

The project consists of two distinct applications. Data-flow between and within these is
shown in figure 2.1. Route Tracer is the Android application I developed and used to
create the training and test data-set. Inference Framework generates segments, segment
features, classifiers, feature distributions and visualisations, and trains and tests the
classifiers.

Figure 2.1: Data-flow visualisation.

Separating the construction of the data-set from the classifier exploration made sense
for a number of reasons.

• The limited resources available on smartphones would at best have increased run
times and at worst halted all progress. As the size of the data-set, number of
features and number of classifiers increased, memory churn became an issue even
on a machine with 12GiB of memory and necessitated a minor software redesign.

• Debugging smartphone applications is more time consuming due to the decoupling
of IDE and target.
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• Smartphones constrain the programmer by their Application Programming Inter-
faces (APIs) - the Android platform requires applications conform to a strict appli-
cation life-cycle which would have added unnecessary work.

• To inform feature specification and generation I suspected that visualisation would
be useful, and this would be best done with the screen size available on desktops.

2.2 Development Model & Schedule

The sooner data collection commenced, the more data would be collected by the end
of the project and so rapid development of Route Tracer was necessary. Additionally,
development of the Inference Framework could not progress without a small amount of
data for testing. For these reasons development of Route Tracer was scheduled to be
completed by November 3rd and the following two weeks were allocated to accelerated
data collection, for early testing. A waterfall style development process was followed
because the requirements were clear, the scale of the application was reasonably small,
and the scheduling was important. Route Tracer was in a usable state by October 31st
and was finalised on November 6th.

In order to really ensure that Route Tracer was recording useful data and to allow time
for corrective measures if necessary, it was also important to get the Inference Framework
into a minimal functional state as early as possible. This amounted to creating a stub
classifier that mapped segments to transportation modes by testing which of five ranges
the segment’s average moving speed was in. Due to the scale of the application and
number of unknowns, the Inference Framework required something more flexible so an
iterative development process was followed.

2.3 Tools Used

For Route Tracer: Android Eclipse Plugin, Android Source Development Kit (SDK)
For the Inference Framework: Eclipse Memory Analyzer Tool, WindowBuilderPro
Common: Eclipse, Git, LATEX, ObjectAid UML Explorer

2.4 Preparatory Learning

The Eclipse Memory Analyzer Tool, Git, JTransforms, Weka and WindowBuilderPro
were all new to me so required learning. I had previous experience with the Android
tools, Eclipse and LATEX.

2.5 Platforms & Programming Languages

The decision to use Android devices was primarily informed by how this would affect data
collection. Android was by far the most popular platform among potential volunteers, so
choosing it would likely result in a larger data-set. My pre-existing Android knowledge
would also minimise development time, allowing more time to be invested in the Inference
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Framework. Java was the most appropriate language for the Inference Framework, given
that Weka [8] is written in Java; this would ease integration.

2.6 Related Work

2.6.1 Accelerometer and GPS

Reddy et al. [1] use both accelerometer and GPS data to infer transportation mode
with an accuracy of 98.8% in the classes {still, walk, run, bike, motor}. A number of
classifiers (Naive Bayes, Decision Tree (DT), k-Nearest Neighbour (kNN), Support Vec-
tor Machines, Continuous Hidden Markov Model and a Discrete Hidden Markov Model
(DHMM) enhanced DT) are tested. The 98.8% result is with the DT-DHMM algorithm,
which uses human estimates for the DHMM state transition probabilities. The DHMM
stage increases accuracy by 3.3% over the DT system but the DT on its own achieves
accuracy of 95.7%; still better than the other classifiers.

Features: variance (accelerometer), energy (accelerometer), sum of FFT coefficients
0.5-10Hz (accelerometer), speed (GPS).

2.6.2 GPS only

Zheng et al. [2], [3] created and tested a number of classifiers, varying the segmentation
method (fixed length, fixed duration and change point based), the generated features and
the classification algorithm as well as introducing post-inference enhancement techniques
using a database of change points combined with a DHMM. Classification in all cases
is into classes {walk, car, bus, bike}. The most accurate system has accuracy of 76.2%
(precision 51.6%, recall 81.8%).

Features: segment length, mean velocity, top three velocities, top three accelerations,
variance of velocity, Heading Change Rate (HCR), Stop Rate (SR), Velocity Change Rate
(VCR).

2.6.3 Accelerometer only

Manzoni et al. [4] created a classification system that using only accelerometer data
classifies into {bus, metro, walk, bicycle, train, car, still, motorcycle} with an accuracy
of 82.15% percent.

Features: 32 FFT coefficients, computed on a window 512 samples long (10.24 sec-
onds), with a window overlap of 50% (5.12 seconds), signal variance.
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2.6.4 Summary of related work

Table 2.1 shows a summary of the above described classifiers (for Reddy et al. and Zheng
et al. the summaries relate to the most accurate system they created).

algorithm Reddy et al. [1] Zheng et al. [2] [3] Manzoni et al. [4]

sensors accelerometer, GPS GPS accelerometer

structure fixed length segments
→ decision tree→ dis-
crete hidden markov
model

walk/non-walk seg-
ments → decision tree
→ discrete hidden
markov model →
DHMM graph-based
post-processing using
change-point data

fixed length segments
→ decision tree →

accuracy 98.8% of segments cor-
rectly identified

76.2% of distance cor-
rectly identified

82.15% of segments
correctly identified

classes {still, walk, run, bike,
motor}

{walk, car, bus, bike} {bus, metro, walk, bi-
cycle, train, car, still,
motorcycle}

size 6 users / 20 hours of
data

65 users / data col-
lected over several
months

4 users / “several”
hours of data

device Nokia N95 Independent (numer-
ous stand-alone GPS
devices)

Google Nexus One

Table 2.1: Summary of related work.

2.6.5 Findings

From the above described works I take:

• The idea of segmenting routes into fixed duration segments.

• The indication that the C4.5 DT and kNN classifiers are good for transportation
mode inference.

• My own interpretation of HCR, VCR and SR as features for GPS location data.

• The indication that spectral coefficients are good accelerometer features.
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2.7 Requirements Analysis

2.7.1 Recorded transportation modes

I decided to collect data for the classes {bike, bus, car, train, walk}.
The main factor I considered was popularity; considering the energy metering applica-

tion, the accuracy would largely be determined by the amount of time the transportation
mode is correctly identified1. This can only be done if the system is designed to include
that transportation mode. Despite this, air travel is not included because smartphones
may be switched off or unable to provide the necessary sensor data while in flight. For
the energy metering application a better solution may be to mine flight reservations from
emails.

Although it may be useful to distinguish between private cars, coaches and taxis,
doing so would not be a realistic goal; intuitively there do not appear to be significant
differences in the drive-time properties of private cars, coaches and taxis. In contrast,
buses are expected to stop more frequently to let passengers on and off. Consequently,
private car, coach and taxi journeys are covered by the car class.

2.7.2 Recorded sensor data

Route Tracer logs events from the following sources: {GPS location, GPS satellite, ac-
celerometer, light level, magnetic field, orientation}. Table 2.2 summarises the values
recorded for each sensor event type.

With the goal of the project being to compare different features and classifiers for
transportation mode inference, the approach here was to be as broad as possible. Accel-
eration and GPS location are known to be good sources, and I had a number of ideas
for how the other sensor data may be useful for inference. Sensor data such as gyro-
scope information is not recorded because Route Tracer was written to be compatible
with the Android 2.1 API upwards. At both the time of writing Route Tracer and the
time of writing this dissertation, Android devices with internal gyroscopes remain in the
minority.

The idea with GPS satellite events is that a lack of information (in this case a low
number of visible satellites or poor signal SNR) is information in itself. Previous expe-
rience on trains suggests the majority of the time is spent without a GPS fix (i.e. with
no GPS location data available to the classifier) but with meta-data such as the satellite
count and SNRs available. This is explained by the fact enclosed vehicles (trains, buses
and cars) act as Faraday cages, reducing the amplitude of electromagnetic transmissions
(in this case messages from GPS satellites) external to the enclosure. Magnetic field data
may provide information through the variance of local magnetic fields across different
vehicle types due perhaps to vehicle component magnetisation or the presence of electric
motors.

Light level data may be useful if we suppose that bus users listen to music - presumably
using their smartphone and perhaps keeping the device in their hand - more than users
of other transportation modes. Recorded light levels on buses would be higher than

1Actually the cost of that transportation mode must also be considered; even if an individual only
uses air travel once in a year it may still dominate all other modes in terms of energy usage.
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transportation modes where users keep their phones pocketed. The expected orientation
of a phone kept in hand will differ from one kept in a pocket and so the mean orientation2

may also be useful.

Sensor event type Value

Accelerometer Acceleration minus Gx on the x-axis, acceleration minus
Gy on the y-axis, acceleration minus Gz on the z-axis,
accuracy. All accelerations in ms−2.

GPS location Longitude and latitude (degrees), altitude, accuracy
(meters), speed (ms−1).

GPS satellites Pseudo-Random Name (PRN) and SNR (per satellite).
Light level Light level (Lux), accuracy.
Magnetic field X, Y and Z magnitudes (micro-Tesla), accuracy.
Orientation From Android’s SensorEvent classa : “Azimuth, an-

gle between the magnetic north direction and the y-
axis, around the z-axis (0 to 359). 0=North, 90=East,
180=South, 270=West Pitch, rotation around x-axis (-
180 to 180), with positive values when the z-axis moves
toward the y-axis. Roll, rotation around y-axis (-90 to
90), with positive values when the x-axis moves toward
the z-axis. For historical reasons the roll angle is positive
in the clockwise direction (mathematically speaking, it
should be positive in the counter-clockwise direction).”

a http://developer.android.com/reference/android/hardware/SensorEvent.html

Table 2.2: Summary of recorded data.

Definitions

As specified by Android’s SensorEvent class, “the coordinate-system is defined relative
to the screen of the phone in its default orientation. The axes are not swapped when the
device’s screen orientation changes. The X axis is horizontal and points to the right, the
Y axis is vertical and points up and the Z axis points towards the outside of the front
face of the screen. In this system, coordinates behind the screen have negative Z values”.

For accelerometer, light level, magnetic field and orientation events, accuracy is one
of {unreliable, low, medium, high}, as specified by Android’s SensorManager class3.

2.7.3 Log format

At approx. 100MiB of information per day, as detailed in table D.1, efficient coding was
important. While custom binary would enable the most efficient coding and eXtensible
Markup Language (XML) may have been easier to develop readers and writers for, human

2The orientation data provided by the Android sensor API is a transform of the accelerometer data
but is logged for completeness and to avoid unnecessary work both when programming and at run-time.

3http://developer.android.com/reference/android/hardware/SensorManager.html
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readability was essential to allow quick sanity checking of data. With this in mind I
elected to use a custom text format. Each line begins with a millisecond accuracy time-
stamp followed by labelled columns of data - the contents depending on the sensor type
- separated by spaces. An example GPS location event line follows:

timestamp: 1298281761000 accuracy: 48.0 longitude: 0.10290026664733887...

...latitude: 52.21152126789093 altitude: 53.0 speed: 0.0

Gzip compression is used to reduce the storage requirements of this custom text format
(the labels enable human readability but also mean there is a huge amount of redundant
data). The standard Java GZIPInputStream and GZIPOutputStream classes are used
to achieve approximately ten-fold compression. Files are saved to the device’s external
storage. There are six files per Route Trace - one per data source - with the following
naming scheme:

deviceID $DEVICE ID version {1,2} starttime $MILLISECOND ACCURACY TIMESTAMP...

... transport {BIKE,BUS,CAR,TRAIN,WALK} sensor {ACCELEROMETER,...
...GPSLOCATION,GPSSATELLITES,LIGHT,MAGNETICFIELD,ORIENTATION}.routetrace.gz

2.8 Data Collection

2.8.1 Data-set visualisation and summary

Figure 2.2 and table 2.3 visualise and summarise the data-set. To ensure all routes
traces had an associated ground truth I designed Route Tracer so that route tracing was
activated by pressing the one of five transport class buttons matching the current vehicle
type.

Figure 2.2: Data-set ground truth visualisation (green = bike, orange = bus, red = car,
blue = train, yellow = walk). Newer routes are rendered on top of older routes.
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time distance

devices
1 87h 25m 01s 2,773.953 km
2 10h 17m 34s 397.238 km
3 01h 47m 18s 146.667 km

volunteers
volunteer 1 01h 47m 18s 146.667 km
volunteer 2 02h 19m 55s 9.495 km
volunteer 3 88h 07m 04s 2,809.96 km
volunteer 4 01h 35m 32s 89.378 km
volunteer 5 02h 39m 05s 210.646 km
volunteer 6 03h 00m 59s 51.712 km

transport classes
bike 45h 22m 51s 981.988 km
bus 03h 28m 37s 79.403 km
car 27h 16m 55s 1,611.907 km
train 05h 52m 15s 578.631 km
walk 17h 29m 15s 65.929 km

totals 99h 29m 53s 3,317.858 km

Table 2.3: Summary of data-set.

2.8.2 Volunteers

Volunteers were recruited through college and family connections. A total of six volunteers
helped over a six month period to create the data-set which consists of over 3000km of
Route Traces, over 200 routes and spans 8 cities in 4 countries. In order to ensure a
varied and representative data-set could be created, a G1 smartphone was borrowed from
the Computer Laboratory. This meant I was able to provide volunteers without Android
smartphones a device to contribute data with.

2.8.3 Power management

For longer routes such as rail journeys with connecting stages, and for the volunteers who
took the G1 to Belgium on their Rag Jailbreak, battery run-times would have been an
issue. In anticipation of this, I built a universal charger with Univseral Serial Bus (USB)
ports as outputs, powered by readily available AA batteries. This is shown in figure 2.3.
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(a) Universal charger with USB
ports

(b) Data collection on train

Figure 2.3: Universal charger and data collection on train.

2.9 Contingency Measures

Experience suggests that the principle cause of data loss is human rather than machine
error, so the approach I took was to revision control everything unless there was good
reason not to.

Route Traces are immutable and thus require no revision control which is fortunate
given their size, reaching approx. 50MiB for long routes. The Route Trace directory
of the project is excluded from revision control; this also helped maintain privacy and
anonymity for volunteer contributed Route Traces. The OpenStreetMap (OSM) tile cache
and heap-dumps are excluded from revision control and backups due to their size and
reproducibility.

2.9.1 Revision control

I chose to use Git for revision control because its distributed model means that the whole
project history is stored in the local working project directory as well as at whichever
remote repositories the project is pushed to. This is beneficial in several ways, partly
because it removes the need to separately backup the repository as would be required with
centralised systems such as Subversion (the repository itself being almost as important
as the current head). As well as a local Git repository, regular pushes were made to a
remote Git repository held on a Virtual Dedicated Server (VDS) located in Maidenhead.
The VDS itself is backed up by the service provider.

2.9.2 Backups

Daily backups of the working directory were made to the VDS using a cron job that runs
rsync over Secure SHell (SSH). This protects files yet to be committed to Git and unver-
sioned files such as the data-set itself. Manual off-line backup of the working directory
(including the contained Git repository) was periodically made to a USB flash drive. This
protects against the failure of the local machine and VDS and against human error - e.g.
erasure of root file-systems - or a malicious third party. This backup was also performed
using rsync.
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2.10 Limitations of Data-set

From a high level view there were two directions I could have taken with logging strategy
and ground truth labelling; online and offline labelling.

With online labelling as implemented in Route Tracer, users must press a button on
the device every-time they change transportation mode and do so as close to the transition
time as practical. This has the benefit of not requiring later recall of the day’s events. The
disadvantage is that occasionally volunteers forget to change the transportation label until
several minutes after a transition, resulting in inaccurate ground truths and so reducing
the accuracy of any results drawn from the data-set.

With offline labelling Route Tracer would have continually logged events on the device.
A supporting desktop application would then allow volunteers to visualise their day’s
activities on a map and retrospectively add ground truth labels, using the map as a recall
aid. The advantages would be a possible increase in ground truth accuracies and more
data would be recorded per day. However, most smartphones - including the G1 - would
only allow a maximum of approx. six hours of route traces on battery charge. It would be
unreasonable to require volunteers to maintain battery charge over the course of the day.
Additionally, the start of data collection would have been delayed by the requirement
that the offline labelling tool also be completed and ready for use.

The type of labelling used has further reaching implications than the demands placed
on volunteers. With online labelled routes inference techniques are restricted to memory-
less segment based schemes. As a result I am unable in the work that follows to test
algorithms which work by splitting continuous data streams into walk and non-walk
segments as done by [2] and [3] or algorithms which work using DHMM techniques to
enhance segment inferences based on transition probabilities ([1], [2] and [3]). Instead,
all of my work focuses on determining the best algorithms and data sources for single
segment inference.

Opting for the online labelling approach allowed the project to be broken down into
more loosely coupled components than an offline labelling scheme would have allowed.
This reduced the risk involved in scheduling, helping to ensure that the project was
completed on time.

14



Chapter 3

Implementation

3.1 Libraries Used

Figure 3.1 shows how JTransforms and Weka fit into the Inference Framework.

Figure 3.1: Inference Framework data-flow and library usage visualisation.

3.1.1 jline

In its first stages the Inference Frameworks’s user interface was command line only. I
used the jline1 library to provide the system with tabbed command completion and
history to decrease the amount of time spent typing while testing, thus increasing overall
productivity.

3.1.2 JTransforms

To generate sensor features derived from spectral data, the incoming time domain data
are transformed into the frequency domain using the JTransforms library2 which includes

1http://jline.sourceforge.net/
2http://sites.google.com/site/piotrwendykier/software/jtransforms
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FFT, Discrete Sine Transform (DST), Discrete Cosine Transform (DCT) and Discrete
Hartley Transform (DHT) algorithms.

3.1.3 Weka

Weka [8] provides a number of machine learning algorithms as well as an evaluation
system that I was able to integrate into the Inference Framework. This meant that I did
not have to reimplement algorithms such as the C4.5 Decision Tree [9] and was able to
spend more time exploring data sources and features.

3.2 Segment Features

3.2.1 Accelerometer, magnetic field and light level features

The same features are generated for accelerometer, magnetic field and light level data
sources. Table 3.1 shows their definitions.

Because of the way Android’s sensor event system works, sensor events are not pro-
duced at a fixed sampling rate. This complicates computing FFTs, which require the
input data to have constant spacing between samples. One way to work around this
would have been to interpolate between events to generate constant sample rate event
streams. Doing this in Route Tracer was ruled out because implementing and validat-
ing an interpolation system would have delayed the start of data collection. Moreover,
information would be lost and so further exploration would not be possible.

Manzoni et al. [4] encountered this same problem due to using an Android phone
and successfully implemented an interpolation system. I opted for a different approach;
I computed the variance across all events for a route and found that although sampling
rates vary slightly, they are approximately constant. Over a ten second segment the
number of events will be approximately 5003. Using this fact we can generate reasonably
useful features by taking the FFT of these 500 events and merging the output bins into
five larger groups. The act of merging the output bins reduces the error introduced by
the fact that for segments that differ in the number of events they contain, the unmerged
output bins actually correspond to different frequencies. The trade-off is that there are
fewer features for the classifiers to use.

310 seconds at 50 events per second; the mean time period between events is 20 ms.
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Feature Definition

Low range spectral power (n = 1)

The sum of FFT coefficients in the bins
n−1
6
× totalbins to n

6
× totalbins

Low-mid range spectral power (n = 2)

Mid-range spectral power (n = 3)

Mid-high range spectral power (n = 4)

High range spectral power (n = 5)
Minimum magnitude The {smallest,largest} magnitude in the

segment, where for accelerometer and
magnetic field events this is the Euclidean
norm of the {x, y, z} event values and for
light level events it is simply the light level.

Maximum magnitude

Mean magnitude The {mean,variance} of the magnitudes of
all events in the segment, where for
accelerometer and magnetic field events this
is the Euclidian norm of the {x, y, z} event
values and for light level events it is simply
the light level.

Magnitude variance

Table 3.1: Summary of spectral features. Emphasised features differ significantly from
definitions in the literature. None of the reviewed literature implement magnetic field or
light level features.

3.2.2 GPS location, GPS satellite and orientation features

Table 3.2, 3.3 and 3.4 show summaries of the orientation, GPS location and GPS satellite
features.

Feature Definition

X mean The sum across all orientation events in the segment of
the {X,Y,Z} orientation values, divided by the number
of orientation events in the segment.

Y mean
Z mean
X variance

The variance of the {X,Y,Z} orientation values across
all orientation events in the segment.

Y variance
Z variance

Table 3.2: Summary of orientation features. None of the reviewed literature implement
orientation features.
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Feature Definition

Heading change rate The number of times the bearingabetween two location
events is greater than 20◦, divided by the number of
events in the segment.

Velocity change rate The number of times the speed between two location
events differs by more than 2ms−1, divided by the num-
ber of events in the segment.

Stop rate The number of location events for which the speed is
less than 1ms−1, divided by the number of events in the
segment.

Minimum speed The {smallest,largest} speed of any location event in
the segment.Maximum speed

Mean speed The {mean,variance} of the speeds of all location
events in the segment.Speed variance

Total distance The sum of the great circle distancesabetween all con-
secutive pairs of location events in the segment.

Increasing altitude mean The sum of altitude changes between all consecutive
location event pairs for which altitude was
{gained,lost} divided by the number of location event
pairs between which altitude was {gained,lost}.

Decreasing altitude mean

Maximum altitude gain The maximum {gain,loss} of altitude between any
consecutive pair of location events in the segment.Maximum altitude loss

a Computed using code taken from http://android.git.kernel.org/?p=platform/

frameworks/base.git;a=blob_plain;f=location/java/android/location/Location.java

which is in turn based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf.

Table 3.3: Summary of GPS location features. Emphasis indicates features that are
either not present in the literature reviewed or that may differ from definitions in the
literature.

Feature Definition

Mean satellite count The sum across all satellite events in the segment of the
number of visible satellites in that event, divided by the
number of satellite events in the segment.

Mean SNR The sum of satellite SNR values across all satellite events
in the segment, divided by the number of satellite events
in the segment.

Table 3.4: Summary of GPS satellite features. None of the reviewed literature implement
GPS satellite features.
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Figure 3.2: Inference Framework route and features class diagram.
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3.3 Route Parsing and Representation in Memory

Figure 3.2 shows the class structure of route and feature areas of the Inference Framework.
The key classes involved with representing routes in memory are described below.

3.3.1 SensorEvent

SensorEvent is an abstract class which contains data common to all SensorEvent im-
plementations; in this case just the timestamp of the event. Implementations include
additional information, such as lists of GPS satellites.

3.3.2 SensorData

SensorData is an abstract class which contains a single SortedMap from timestamps
to SensorEvents. Implementations override the abstract generateSensorFeatures()

method to compute features (e.g. HCR) by iterating through SensorEvents. It provides
functionality common to all implementations, such as a method that computes a number
of statistics on the timing of SensorEvents. Implementations of SensorData are con-
structed from a SortedMap of SensorEvents.

3.3.3 RouteSegment

A RouteSegment is a view onto six series (one per SensorEvent type) of contiguous
SensorEvents. These SensorEvent series are held by six SensorData implementations.
RouteSegments are constructed from six SortedMaps of SensorEvents.

3.3.4 Route

The Route constructor reads in the six routetrace.gz files associated with the route
and constructs SensorEvent objects from the lines in these files. Which SensorEvent
implementation is used is determined by which routetrace.gz file is being read. The
Route constructor then constructs a main RouteSegment from these SensorEvents and
keeps a reference to this, along with information such as the transportation mode ground
truth. Route provides a method for obtaining RouteSegments of any duration. It uses the
subMap(T fromKey, T toKey) method of the SortedMap interface to construct Route-
Segments from SortedMaps that are backed by the SortedMaps of the main RouteSeg-
ment, saving memory.

3.4 Generic Feature System

The route feature system is designed such that the test harness is able to generate clas-
sifiers by inspecting the features provided by each SensorData implementation.

A single SensorType enumeration acts as the starting point for classifier generation.
There is an entry for each sensor type that points to the corresponding SensorData and
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SensorEvent implementation classes. Each SensorType entry also points to an enumer-
ation (e.g. GpsLocationFeatureType) of sensor features which enumerates the features
provided by that sensor’s SensorData implementation.

The alternative to this system would have been to have the test harness look for
getter methods matching a certain pattern, which would have made run time errors
during development even more frequent.

The generic feature system was added around the same time that support for GPS
satellite, light level, magnetic field and orientation data features was added. It became
necessary in order to avoid having a large amount of volatile code in the test harness
method which generates feature combinations for testing. Continuing to maintain this
manually would have resulted in poor code and taken up time unnecessarily.

A much better solution would have been possible if Java were to support static meth-
ods in interface definitions or abstract static methods in abstract classes, and supertypes
for enumerations.

3.5 Map Visualisation

Figure 3.3: Inference Framework cartography components class diagram.

3.5.1 Motivation

Volunteers occasionally made mistakes and would either mislabel entire routes or parts
of routes when changing transportation mode (e.g. forgetting to press the walk button
until a minute after they’d got off a train). Volunteers were however able to report
these mislabellings to me when submitting the route traces, allowing manual correction.
Although it is possible with a minimal number of tools to manually edit Route Traces
(gunzip/gzip to decompress/re-compress and head/tail to pull out sub-sequences of
sensor events), doing so is not really practical because it is easier to work with locations
than time-stamps when trying to locate transition points.

Anticipating that the number of mislabelled routes would over time be large enough
that I would save time in the long run by writing a tool to aid relabelling by visualising
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points on a map and allowing for change point modification this way, I set about doing
that by developing a system to overlay routes on OSM4 tiles. The system would also
be useful for gaining insight into the feature definitions, evaluating the classifiers, and
debugging. The number of mislabelled routes was not large enough in the end to justify
spending time developing a relabelling tool on top of the OSM layers.

I did not immediately decide to develop the mapping system from scratch and had first
of all experimented with a number of mapping applications including GPS Prune5, Google
Earth6 and jTileDownloader7. As part of this I added GPs eXchange format (GPX) and
Keyhole Markup Language (KML) export functionality to the Inference Framework al-
lowing any route to be saved as a GPX or KML file, enabling import into the above
applications. Importing routes into any of these applications would have been a workable
solution if the only requirement was sanity checking of incoming data, but even then it
would have been a time-consuming process. I did modify the GPS Prune source code in
order to partially automate the process, but the resulting solution was somewhat messy
and would still only have been suitable for data sanity checking, not general purpose visu-
alisations. This was because GPS Prune does not provide an API and so my modification
was fairly tightly coupled to GPS Prune.

The final map visualisation system serves to sanity check data and to provide insightful
colour-coded visualisation of any generated feature - such as mean speed by segment -
and visualisation of other data such as misclassified segments. This is useful in informing
feature design and optimisation.

3.5.2 Caching

OSM tiles are downloaded and cached in accordance with OSM policy: “Tiles must be
cached locally according to the Hyper Text Transfer Protocol (HTTP) Expiry Header,
alternatively for a minimum of 7 days. A maximum of 2 download threads are allowed.”

3.5.3 Layer system

The map visualisation architecture is built around a layering system. An abstract Layer
class serves to reduce code duplication by containing code common to all types. There
are three layer types:

• MapTilesLayer downloads and stitches together map tiles from OSM.

• RoutePointsLayer visualises route segment points based on properties of the seg-
ment such as its transportation mode ground truth, or segment features such as
mean GPS speed.

• RouteKeyLayer is a static overlay in the sense that the location of its contents on
screen does not change as the map is panned. Despite this, implementing it as a
layer makes sense because code duplication is still minimised this way.

4http://www.openstreetmap.org/
5http://activityworkshop.net/software/prune/
6http://www.google.co.uk/intl/en_uk/earth/index.html
7http://wiki.openstreetmap.org/wiki/JTileDownloader
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3.5.4 Pre-rendering and multi-threading

The LocationMap system features multi-threaded rendering for responsiveness. This
prevents the rendering of route points being delayed by the map tile renderer which
may spend a lot of time blocked on network Input Output (IO). A large amount of the
complexity in this code arises in conforming to the OSM policy that a maximum of two
download threads are allowed; the LocationMap system ensures there is never more than
one.

An off-screen border area is pre-rendered to improve panning performance: a border
equal in width to the size of the visible portion of the map is maintained in order to prevent
the user from waiting for tiles to be downloaded and layers to render when panning. Pre-
rendering of new layers is triggered when the unrendered area of the currently rendered
layers is within half a screen width of being made visible. Pre-rendering layers are not
made live until they have been completely rendered, or (in the case of rapid panning
or a slow connection) the previously rendered layers become insufficient for the map
region being viewed. The visible portion (i.e. the centre) of layers being rendered is
always prioritised to improve visible performance in this edge case. The zoom levels one
magnification level above and below the current level are always pre-rendered in order to
ensure smooth zooming. Unless panning or zooming is done very quickly the rendering
process will never be seen.

3.5.5 Coordinate systems

The location map system involves calculations in four different coordinate systems. Al-
though it may have been more efficient to implement these as primitives, in the interests
of readability and thus correctness I wrote classes to represent points in these different
systems. This way compile time type checking would prevent most mistakes.

• LongitudeLatitude: an immutable object constructed from a longitude and lati-
tude, both doubles.

• NormalisedMercator: an immutable object constructed from an x and y value,
both doubles and both in the interval [0,1]. (0, 0) is the North West extreme of a
world map in the Mercator projection and (1, 1) is the South East extreme. The
usefulness is that map transformations can be done with simple linear operations,
working independently of any zoom level.

• Tile: an immutable object constructed from an x, y and zoomLevel, all integers,
that represents an OSM tile. Zoom levels are integers in the range 0-18; the range
of x and y values depends on the zoom level. The origin (0, 0) is the North West
extreme of a world map in the Mercator projection.

• Point: the standard Java Point class (not my own implementation).

A CoordinateTransforms class provides static methods for conversion to and from all
of the above four coordinate systems. Methods which convert a zoom level independent
coordinate (LongitudeLatitude and NormalisedMercator) to a zoom level dependent
coordinate (Tile and Point) also take a zoom level as argument.
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Although efficiency gains could be had by maintaining a pool of coordinate objects
and using factory methods to recycle those that are no longer in use, testing showed
that there were no practical performance problems when näıvely always constructing
new coordinate objects. It simply would not have been an efficient use of coding time.

The LongitudeLatitude, NormalisedMercator and Tile constructors clip the input
arguments if they are outside the accepted range, e.g. new NormalisedMercator(0.5,

1.1) is equivalent to new NormalisedMercator(0.5, 1). This behaviour is desirable
because it pushes the detection of edge cases lower down, simplifying the higher level
code in LocationMap and Layer implementations (if exceptions had been used instead,
the catch bodies would just implement clipping themselves).

3.6 Memory Limitations

As the size of the data-set and the number of sensor types and associated features in-
creased the run-time of the evaluation continued to increase until it got to a point at
which it jumped up from less than an hour to several hours. Realising that this was due
to memory churn (brought on at an earlier stage than it would otherwise have been due
to the test harness multi-threading), I first sought to reduce it by increasing the Java
Virtual Machine (JVM) heap size to 10GiB (this was the maximum practical value given
the test machine had a total of 12GiB of physical memory). This worked as a stop-gap fix,
but as the data-set and number of implemented features continued to grow the problem
of memory churn returned, to the point at which the evaluation could be left for 24 hours
and not make any progress.

Renting time on the Amazon Amazon Elastic Compute Cloud (EC2)8 platform was
briefly considered, but knowing that this would bring with it its own set of problems
in the form of decreased productivity due to the separation of Integrated Development
Environment (IDE) and target, I sought to reduce the memory requirements of the Infer-
ence Framework in order to allow it to progress on my local machine. Using the Eclipse
Memory Analyzer Tool (MAT)9, I was able to confirm my suspicion that the majority of
heap memory was being used for SensorEvents, with memoized LocationMap layers being
the the secondary culprit. As the SensorEvents are not directly needed for evaluation,
I was able to refactor the Inference Framework and significantly reduce the run-time of
the evaluation, returning it to its original duration of approx. 1 hour.

3.6.1 Route segment memoization

I modified the Route constructor so that it would automatically generate route segments
of length 10,000ms and memoize them. Having done this the Route makes its main
RouteSegment have all of its SensorData instances (of which there are six, one for each
sensor-type) let go of their SensorEvent references10. On its own this optimisation does
not help, but it paves the way for feature memoization which results in dramatic memory
usage reductions.

8http://aws.amazon.com/ec2/
9http://www.eclipse.org/mat/

10GPS location events are kept in order that map visualisations can be drawn
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3.6.2 Feature memoization

All SensorData implementations provide two types of features; timing and value features.
The timing features are inherited from the abstract SensorData class that they extend
while the value features are specific to the sensor type. When SensorData objects are
constructed they also generate all implementation defined features. By doing this, the
Route constructor can now safely clear each memoized 10,000ms RouteSegment’s Sen-
sorData objects of their SensorEvents, allowing the garbage collector to reclaim that
memory. Now each serialized Route object is also many times smaller, which enables
loading speed-ups.

3.7 Optimisations

3.7.1 Map layer memoization

Once rendered, layers for zoom levels other than the current zoom level are memoized
using Java SoftReferences so that a subsequent return to that zoom level can be done
using the existing renders (provided the map region to be viewed is contained within
the existing render). SoftReferences are used because each layer, being represented as a
BufferedImage, is fairly resource heavy. Since they are not a necessity it makes sense to
allow the JVM to garbage collect them when necessary.

3.7.2 Test harness multi-threading

The cross validation of Weka’s classifiers is fairly time consuming when performed on the
number of feature sets and classifiers this project tests, and with a data-set of the size used
in this project. To combat this the test harness spawns a pool of worker threads equal
in size to the number of available processors and uses these to perform the evaluation,
resulting in a significant decrease in the run-time.

3.7.3 Data-set loading, caching and multi-threading

Loading in every route in the data-set from disk each time the Inference Framework was
launched took a significant amount of time, and as the data-set was growing in parallel
with the Inference Framework this time would only increase. As each addition to the
code would require several launches of the Inference Framework for testing, this would
have wasted a lot of time. To combat this, I implemented a caching system that works by
making routes serializable. When a route is loaded for the first time, it is also serialized
and written out to disk alongside the six sensor files, with the name format:

deviceID $DEVICE ID version {1,2} starttime $NANOSECOND ACCURACY TIMESTAMP...

... transport {BIKE,BUS,CAR,TRAIN,WALK}.routetrace.cache
When first implemented, the first run with this caching took 165s to read in the then

400MiB data-set (due to the cache write-back), and subsequent loads took 55s. Prior to
this it took 80s to load in the data-set. The size on disk of cached routes was the same
order of magnitude as their non cached forms, which is expected; the speed-up from
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caching results from not repeating the parsing stage of reading in event lines to construct
sensor event objects.

Some time after implementing the caching system I further improved the route loading
stage through multi-threading, that is, creating a pool of worker threads equal in size to
the number of available processors and having them pull jobs from a sorted set of prefixes
until no more remain. The prefixes are strings representing the route traces that had
been found in the scanning stage, and the reason for sorting them is so that routes are
assigned route id numbers in chronological order, helping human comprehension of the
route listing.

The switch to multi-threaded route loading resulted in a speed-up from 100 to 35
seconds (the data-set now consisted of 28611 routes). The speed-up results from the fact
that with the single threaded approach the route loading was not limited by disk access
speeds but by the rate at which the JVM could allocate memory. Using multiple threads
helps approach the limit of disk access speeds - the single threaded rate of 8MiB/s sug-
gested further improvements could be made - by increasing the rate of memory allocation.
Table 3.5 shows the overall result of this work.

Optimisation Speed-up

Caching 1.45x
Multi-threading 2.85x
Segment and feature memoization, SensorEvent garbage collection 11.6x
Total speed-up 47.9x

Table 3.5: Route loading speed-ups.

I hypothesised that an additional speed-up could be gained by changing the Sen-
sorEvent system to not have each SensorEvent be a new instance but instead have a
singleton SensorEvent that would represent all sensor events using a number of arrays. A
SensorEvent instance in such a system would just be an array index (returned by the sin-
gleton SensorEvent when a new event is constructed) which is then given to SensorEvent
accessor methods which wrap access to the arrays. The speed-up from using a system
like this would result from a reduction in the number of objects created from O(n) to
O(1) (in terms of the number of sensor events n). I went ahead and implemented this
alternative system and found that it did not work so well because:

1. Knowing how many sensor events would be created in advance of constructing the
singleton SensorEvent proved difficult, and using resizeable data structures instead
of arrays would largely defeat the point.

2. If the singleton pattern were to be used in conjunction with caching it would require
the cache to be ignored and regenerated each time a route was added to the data-set,
limiting its usefulness.

11This includes corrupt routes and routes less than 30 seconds in length; the data-set size reported
elsewhere is smaller because these are filtered out before the evaluation runs.
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Figure 3.4: Inference Framework main view showing the data-set ground truths (green:
bike, orange: bus, red: car, blue: train, yellow: walk). Newer routes are rendered on top
of older routes.
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3.8 Graphical User Interface

The Model View Controller pattern is used at a high level for the user interface. Figure
3.5 shows the structure of the top level and User Interface (UI) components of Inference
Framework.

Figure 3.5: Inference Framework user interface class diagram.

3.8.1 Inference Model

InferenceModel contains methods for finding and loading routes from their on disk rep-
resentations, using the multi-threading and caching techniques described previously. It
also provides and maintains mappings from device groups to routes, directories to routes,
transport types to routes, and route ids to routes; these are used by the controller to
efficiently select subsets of the loaded routes for viewing and when summarising the
data-set. A selected routes collection which can be set using a select command contains
the routes to be used by commands which work on routes (e.g. evaluation and visuali-
sation commands). InferenceModel also contains the high level method which initialises
the evaluation.

3.8.2 Inference View

Figure 3.4 shows a full view of the Inference View layout, which was constructed with
the help of WindowBuilderPro12. InferenceView does not contain any application logic,
instead providing only methods to register action and event listeners with the various
components it contains. It provides a split pane view, with the top pane containing a
view onto the LocationMap (which is drawn using LocationMap’s drawImage(Graphics

graphics) method). The bottom pane contains a text area and text field which together
enable console style interaction; commands are typed into the text field and output
is displayed in the text area. Opting for primarily text based interaction - with the
exception of panning and zooming the map - benefited both development time and the

12http://code.google.com/javadevtools/wbpro/
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speed with which the Inference Framework can be used, especially once command history
functionality was added back13.

The observer/observable pattern is employed by the LocationMap and InferenceView
classes; LocationMap is Observable and the InferenceView registers with it for updates.
The LocationMap marks itself as changed whenever more data is drawn to a visible and
rendering layer (e.g. when a tile completes downloading, or a route segment completes ren-
dering). Combined with the fact that rendering is asynchronous this ensures the Inference
Framework feels responsive. When the data-set has been loaded or when the visible route
selection changes the map zoom level and origin are updated so that the visible routes
are centred on screen. This is done via a call to a recentreMap method in LocationMap
which iterates through all GPS location points in the current route selection, updating
its record of the minimum and maximum longitudes and latitudes in the visible route
selection as well as the upper and lower limits of the feature selected for visualisation. Pri-
vate helper methods calculateInitialOrigin and calculateInitialZoomLevel help
to achieve centering of the routes on screen.

3.8.3 Inference Controller

InferenceController registers callback methods with InferenceView that handle command
input, command history scrolling and mouse movement corresponding to map zooming
and panning. The command system fits the Command pattern14 and is built around
an abstract Command class which has an abstract run method. The InferenceController
constructor puts a number of anonymous inner classes which extend Command into a map
from Strings to Commands, where the String is the name of the command. Implementing
commands as inner classes prevented a lot of otherwise redundant accessor methods being
needed in InferenceModel. When a command is entered it is retrieved from the map and
its run method is called with the command line as argument.

13jline was not used because tabbed completion would no longer have been beneficial to productivity,
and it was less work to implement a command history from scratch than to reintegrate jline.

14http://en.wikipedia.org/wiki/Command_pattern
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3.9 Route Tracer Implementation

Route Tracer is the Android application used by volunteers to record test data.

3.9.1 Activity and Service Compartmentalisation

Route Tracer is split into a back-end part which handles sensor and location events and
logs them to the Secure Digital (SD) card, which is implemented as an Android Service,
and a front-end user interface which allows changing of preferences, live viewing of sensor
data, and controls the creation of Route Traces. The front-end consists of a number of
Android Activities.

Aside from being good practice in terms of code readability and modularity this was
important because the Android Activity life-cycle permits Activities to be destroyed by
the OS at any time in order to free up resources for foreground Activities. Doing the
logging in a Service ensures it is not interrupted when the system load is high.

3.9.2 Route trace submission

When a volunteer had a collection of routetrace.gz files ready to be added to the
data-set the files were either emailed to me or returned with the G1. Having Route
Tracer automatically upload Route Traces would be inappropriate as the G1 was used
Subscriber Identity Module (SIM)-free the majority of the time, and volunteers using
their own phones might not appreciate an application using bandwidth unnecessarily.

3.9.3 Timing problems

sensor mean (ms) minimum (ms) maximum (ms)

accelerometer 21.196 3.284 166.002
gps location 1,000 1,000 1,000

gps satellites - - -
light level - - -

magnetic field 21.098 3.409 162.154
orientation 22.588 3.746 163.772

Table 3.6: Mean values of sensor event time period properties for a typical route.

The way that the Android sensor and location APIs work is problematic for the generation
of some sensor features as Android provides no guarantees on the rate at which events are
generated; as a result, sampling rates are not consistent. This is particularly problematic
for spectral features which require FFT transforms of sensor value magnitudes. The
timing statistics across all sensor types, shown in table 3.6, illustrate this.

There was some appeal to developing Route Tracer in a way such that it would hide
the the fact that sampling rates are not constant in that it would make the correctness
of feature generation code easier to reason about. However, I elected not to do this as it
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would only increase the complexity of Route Tracer and increase its run-time overheads,
while not actually increasing the amount of information contained in the Route Traces.
Route Tracer instead works by doing only the essential job of logging sensor events at
whatever rate they are generated by the OS.

3.9.4 Android Market release

I published Route Tracer on the Android Market on December 17th; by this point it
had several weeks of use and so was known - to some degree - to be correct. This made
distribution to volunteers who chose to use their own Android smartphones easier. Figure
3.6 b shows the Route Tracer Market Page.

A minor update was released on December 18th adding backward compatibility with
Android 2.1; at that time and at present a significant fraction of devices run Android
2.115. At the time of writing this dissertation, Route Tracer has been downloaded 2,390
times, and there are 357 currently active installs.

3.9.5 User interface

With the goal of collecting as much data as possible and with as accurate labelling as
possible it was clear that Route Tracer would best achieve this by being as simple to use
and as minimalist as possible in its design. This I achieved by having the main Activity
be an arrangement of six buttons, with icons indicating which mode of transportation
they initiate logging for (which button is pressed determines only the labelling of the
routetrace.gz files produced).

A smaller button brings up the live sensor data view Activity (used primarily during
development for debugging but left in for interested users). The main Activity menu
button provides access to the Preferences activity and an About page, showing device
and application version information. The main Activity works in both portrait and
landscape orientations by defining two LinearLayouts for the button arrangement. The
Android platform takes care of switching between these on an orientation change. Figures
3.6 a, c, d and e shows these four Activities.

15http://developer.android.com/resources/dashboard/platform-versions.html
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(a) Main Activity (b) Route Tracer Market
Page

(c) Details Activity

(d) Preferences Activity (e) About Activity

Figure 3.6: Route Tracer sub activities
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3.10 Technical Issues

3.10.1 Sensor API problems

Within days of beginning Route Tracer development it became apparent that a large
number of Android devices suffer from a bug16 that prevents delivery of sensor events
to applications when the device’s screen is switched off. Early builds of Route Tracer
contained a hook that would cause a distinctive sound to be played when the device was
in free-fall that enabled quick testing of devices to determine whether they suffered from
the bug.

My own phone - an HTC Hero - suffers from the bug. I implemented in Route Tracer
the work around suggested at Stack Overflow17 but it didn’t help and no matter which
Android version I installed on the HTC Hero it wouldn’t provide sensor events with the
screen off. Conversely, no matter which Android version I installed on the G1, it would
always provide sensor events with the screen off. I flashed CyanogenMod18 6.1 onto the
G1 so that more recent Android features could be used.

I put an alternative work around for the bug in Route Tracer, in the form of a
preference that can be set to make Route Tracer maintain a power lock when logging
data. This prevents the screen from switching off by time-out. However, the screen
will still switch off if the user presses the device’s power button. This meant volunteers
with affected devices would need to ensure they kept their phone’s screen on or the only
data that would be recorded would be GPS location and satellite data. Asking this
of volunteers would be unrealistic; they inevitably do switch devices off, both through
accidentally knocking power buttons and by forgetting not to switch the device off.

The preliminary volunteers I had lined up to create the data-set all had phones affected
by the Android sensor API problem but I was able to rotate the G1 amongst the volunteers
and still produce a reasonable data-set.

16http://code.google.com/p/android/issues/detail?id=3708
17http://stackoverflow.com/questions/2143102/
18http://www.cyanogenmod.com/
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Chapter 4

Evaluation

4.1 Performance Metrics & Terminology

The Inference Framework makes use of Weka’s Evaluation class to compute a number of
information retrieval metrics for each classifier. These metrics are defined below.

Recall: The number of segments correctly inferred by the classifier as belonging to the
class in question divided by the total number of segments in the data-set actually
belonging to that class. The ideal value is 1.

Precision/true positive rate: The number of segments correctly inferred by the clas-
sifier as belonging to the class in question divided by the total number of segments
inferred as belonging to the class in question. The ideal value is 1.

F-Measure: The harmonic mean of precision and recall, i.e. F = 2·precision·recall
precision+recall

. The
ideal value is 1.

False Positive (FP) rate: The number of segments incorrectly inferred by the classifier
as belonging to the class in question divided by the total number of segments
inferred as belonging to the class in question. The ideal value is 0.

Receiver Operating Characteristic (ROC) area: The area under the curve ((0, 0)
(FP rate, true positive rate), (1, 1)). The ideal value is 1.

I have chosen to use recall as the primary metric for accuracy when comparing classi-
fiers because I consider it to be the closest match to the human intuition of accuracy in
this context. Moreover, as classifiers can only label each instance as belonging to one class
there is no need to introduce another metric to measure error rates; misclassifications are
evident as reduced recall.
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4.2 Selected Instance Classifiers

The following Weka instance classifiers were selected for evaluation. This selection was
informed both by findings from the literature and by my own experimentation.

• Naive Bayes [11]: This serves as a baseline for all other classifiers as it is most
simple algorithm.

• C4.5 Decision Tree [9]: The de facto classifier, used by most other works and found
to be the best performer in speed and accuracy. The Weka implementation is
labelled J48.

• k-Nearest Neighbour [10]: Not as good an all rounder as the C4.5 algorithm but a
strong contender nonetheless. The Weka implementation is referred to as IBK.

4.3 Combined Feature Classifier Results

The most accurate classifiers result from combining multiple feature and sensor types
together, which provides the classifier algorithms with more information to work with.
Figure 4.1 shows a comparison of single sensor feature groups and multiple sensor feature
groups. Full classifier evaluation tables are included in appendix A. The chart illustrates
that the choice of features causes far more variation than the choice of classifier.

Figure 4.1: Chart comparing accuracy of sensor features and classifier combinations.
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4.3.1 Accelerometer

Accelerometer data proves to be a good source, despite the variation in sample rates and
the novel FFT approach taken. C4.5 and kNN classifiers both produce good results with
recalls of 0.874 and 0.873 respectively; this is on par with the work of Manzoni et al. [4]
(recall 0.822).

4.3.2 GPS location

The C4.5 and kNN recall rates of 0.787 and 0.743 are respectable. These are similar to
the results of Zheng et al. [2], [3] (recall 0.818).

4.3.3 GPS satellites

The recall rates of 0.620 and 0.503 for C4.5 and kNN classifiers show that GPS satellite
data does contain some relevant information but not enough to consider it as a standalone
data source.

4.3.4 Light level

As expected, due to the very low event creation rates of Android, there is insufficient
light level data for the recall results of 0.519 (C4.5) and 0.243 (kNN) to be conclusive. It
is worth nothing however that the C4.5 recall of 0.519 is likely to have been influenced
by the data-set class prior distributions (despite resampling) and so be an overestimate.

4.3.5 Magnetic field strength

The magnetic field strength features give promising results with recalls of 0.715 (C4.5)
and 0.695 (kNN). However this is probably not enough to use as a standalone data source.

4.3.6 Orientation

The orientation data produce very accurate results of 0.951 (C4.5) and 0.959 (kNN). It is
interesting to note that the kNN classifier breaks the trend and outperforms C4.5. The
inferences are more accurate than those made with accelerometer data and rival those of
the multiple-sensor classifiers. None of the reviewed literature have tried using orientation
data. One thing to consider, however, is that of all the data sources tested, orientation is
the source that is most likely to vary between different users. Due to the small number
of volunteers (8), the results here may be overestimates of what could be expected if the
system were used by a larger number of people.

4.3.7 All features

The all features classifiers are worth looking at because in theory they should be the most
accurate, having the largest amount of information to work with. The C4.5 classifier
yields recall of 0.978 while the kNN classifier gives recall of 0.339. This anomaly may be
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explained by the fact that the kNN learning algorithm may be susceptible to confusion
by extreme outlying values; which are more likely to be present in a larger feature set.

4.3.8 All except light

Given that the light level data do not appear to enable inference of any accuracy I thought
it would be interesting to remove light level data from the feature set and compare to the
all features results. The C4.5 recall actually increases to 0.978 though this is most likely
due to random error resulting from the cross validation and re-sampling (which are done
on a per-classifier basis). The kNN recall increases from 0.339 to 0.972, which leads me
to conclude that the kNN algorithm cannot handle spurious features very well.

4.3.9 Accelerometer and orientation

Android’s orientation data is actually derived from accelerometer values. Based on this
the extra power drawn by using orientation data should be minimal. Therefore in any
power sensitive application that used one of these sources it would make sense to use the
other as well, given the minimal extra cost. The combined recall possible is 0.956 with
C4.5 and 0.963 with kNN; marginally better than orientation data alone.

4.3.10 Non-GPS

GPS receivers draw more power than the other data sources combined: Kjaergaard et al.
[12] found that the Nokia N95 GPS receiver uses approximately six times as much power
as its accelerometer. Power sensitive applications might wish to avoid using GPS data
for this reason, but use all other features to obtain the highest recall possible without
excess power drain. Not using light level data, the expected recall would be 0.968 with
the C4.5 algorithm and 0.967 with the kNN algorithm.

4.3.11 GPS

The previously mentioned Android sensor event power bug1 prevents applications on
some Android devices from using sensor data when the device’s screen is off. In such
cases an inference system would essentially be working with only GPS data (location and
satellite) and could expect recall of 0.837 (C4.5) or 0.775 (kNN).

1http://code.google.com/p/android/issues/detail?id=3708
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4.4 Single Feature Classifier Results

Full classifier evaluation tables are included in appendix A. The comparison here is with
just the C4.5 Decision Tree classifier.

4.4.1 Accelerometer and orientation features

Figure 4.2 shows the performance of individual accelerometer and orientation features.
From this we can see that the orientation X mean is the least useful feature. Given that
the X mean is defined as the Azimuth of the device this makes sense; in theory it should
not contain any useful information.

Y (pitch) and Z (roll) values contain useful information relating to how the user is
carrying or using the device, which will vary depending on whether they are walking,
cycling or seated in a vehicle, hence they enable high recall.

Figure 4.2: Recall with C4.5 classifiers and accelerometer & orientation features.
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4.4.2 GPS location and satellite features

From figure 4.3 it is apparent that many of the GPS location features implemented are
not actually informative; only the speed features and total distance (which is essentially
a speed feature given the fixed segment durations) are. Not surprisingly the SNR mean
is marginally more useful than the satellite count mean; they both essentially measure
the same property (Radio Frequency (RF) signal attenuation) and the SNR mean just
provides a more accurate measurement.

Figure 4.3: Recall with C4.5 classifiers and GPS location & satellite features.
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4.4.3 Magnetic field features

Figure 4.4 shows us that the single most useful magnetic field strength feature is the
mean but that all features provide information.

Figure 4.4: Recall with C4.5 classifiers and magnetic field features.

4.5 Remarks on Feature Selection for Specific Appli-

cations

For the energy metering and traffic routing applications described in the introduction
chapter, the speed of the device would be required by the application and hence the
GPS would be consuming power anyway, in which case my recommendation would be
to use all of the sensor features I have described except for the light level features and
the non-speed GPS location features (as they do not provide any information gain). The
expected recall rates using a C4.5 classifier would be 0.978.

For more general context awareness where speed and/or distance data is not required,
power savings may be made by avoiding the use of GPS features. My recommendation
would be to use accelerometer, magnetic field strength and orientation data; with a C4.5
classifier the expected recall would be 0.968.
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4.6 Evaluation Test Harness

Figure 4.5 shows the structure of the classification and evaluation areas of the Inference
Framework.

Figure 4.5: Inference Framework classifier and evaluation class diagram.

4.6.1 Classifier evaluation

The evaluation test harness creates a list of feature sets, the elements of which are of type
SensorFeature2. This list of feature sets is then iterated through and for each feature
set three segment classifiers are constructed, one using Weka’s J48 classifier, one using
Weka’s NaiveBayes classifier and one using Weka’s IBk classifier. These segment classifiers
encapsulate a Weka classifier, a feature set, and a segment length (fixed at 10,000ms).
A pool of threads equal in size to the number of available processors is then spawned.
These threads remove segment classifiers from the list to be tested and terminate when
none remain, doing for each:

1. Build the contained Weka classifier using the routes that have been selected for
evaluation.

2. Perform 10-fold cross validation of the classifier.

3. Render a misclassification map3 for the classifier, saving it to disk. This shows all
correctly classified segments in green and all incorrectly classified segments in red.

4. Add the resulting Weka Evaluation object into a map from segment classifier names
to evaluation objects for later sorting and viewing.

2This is just a wrapper that points to two enumeration values, the first being the sensor type and the
second being the sensor features.

3Each test harness thread constructs a single LocationMap and reuses it for each segment classifier
it tests.
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4.6.2 Feature distributions and visualisation

The Inference Framework also provides a distribution command, which produces two
images per sensor feature:

Feature histogram

A histogram showing the distributions of the feature value across transport classes is
produced using Weka’s AttributeVisualizationPanel class. This class does not appear to
have been designed for external use, as I have not been able to get it to show class labels.
Despite this, the produced distributions are quite insightful and helped with spotting
problems with feature implementation code (similar distributions across all classes being
suggestive of a problem). As an example, figure 4.6 shows the distribution variation
for the GPS SATELLITES/MEAN SNR feature. Appendix C shows these distributions for all
sensor and feature type combinations.

Figure 4.6: GPS satellite SNR mean class distributions. Minimum: 10.9, Maximum:
37.957, Mean: 24.445, StdDev: 4.249.

Feature value map

A map showing false-colour visualisation of the feature value on a per segment basis.
Figure 4.7 shows the GPS SATELLITES/COUNT MEAN feature visualisation and figures 4.8,
4.9 and 4.10 show the ORIENTATION/{X,Y,Z} MEAN feature visualisations. Appendix B
shows these visualisations for all sensor and feature type combinations.

The value of these visualisations is in how readily they convey the variance of feature
values; the goal being to maximise it. A visualisation predominantly filled with a single
colour would be suggestive of a problem with the feature in question. With figure 4.7 the
red portions indicate a maximum number of visible GPS satellites, while cooler colours
indicate fewer visible satellites. Not surprisingly, the two long routes which clearly saw
fewer GPS satellites are rail journeys.

42



Figure 4.7: GPS satellite count mean visualisation.

Figure 4.8: Orientation mean Azimuth visualisation.
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Figure 4.9: Orientation mean pitch visualisation.

Figure 4.10: Orientation mean roll visualisation.
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Consistent with the finding that the orientation X mean (mean Azimuth) is the weak-
est of the orientation features, there does not appear to be any pattern to figure 4.8. This
is expected; even if there is a pattern to how users orient the phone relative to the vehicle
they are in, the Azimuth mean will tend to zero for cyclic routes.

Orientation mean pitch and roll make more sense when analysed together. Suppose
that there are four predominant Azimuth-agnostic positions that smartphones may be
in:

• Flat on a surface with the screen pointing up.

• Upright, with the microphone end pointing down and the speaker end pointing up,
as may be expected of a pocketed phone and a standing user.

• Partway-upright, as may be expected of a phone on the back of a cyclist or held in
the hand for use.

• Sideways-upright, with one side pointing down and one side pointing up, as may
be expected of a pocketed phone and a seated user.

Combining figures 4.9 and 4.10, there are four predominant combinations of pitch
and roll. The assignments (blue pitch, blue roll = flat), (purple pitch, green roll =
sideways-upright), (purple pitch, purple roll = upright) and (green pitch, green roll =
partway-upright) are the most likely, given knowledge of the individual route transporta-
tion modes.

4.6.3 Misclassification plots

Having trained and evaluation each feature-set/classifier pair, the test harness generates
a misclassification plot by running the trained classifier on each segment in the data-
set. Figures 4.11 and 4.12 show the usefulness of these plots; the large majority of
misclassifications in 4.12 are for car and bike journeys and are randomly distributed
within those contexts. This reassures me that there are no degenerate cases to deal with.
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Figure 4.11: Misclassification plot of classifications with all features except light, with
the C4.5 decision tree classifier. Green: correctly classified segment, Red: incorrectly
classified segment.

Figure 4.12: Misclassification plot of classifications with the GPS satellite mean count
and mean SNR features and the C4.5 decision tree classifier. Green: correctly classified
segment, Red: incorrectly classified segment.
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4.7 Test Data

4.7.1 Data-set summary

Repeated for emphasis, table 4.1 gives a quantitative view on the data-set. To ensure
all route traces had an associated ground truth I designed Route Tracer so that route
tracing was activated by pressing the one of five transport class buttons matching the
current vehicle type.

time distance

devices
1 87h 25m 01s 2,773.953 km
2 10h 17m 34s 397.238 km
3 01h 47m 18s 146.667 km

volunteers
volunteer 1 01h 47m 18s 146.667 km
volunteer 2 02h 19m 55s 9.495 km
volunteer 3 88h 07m 04s 2,809.96 km
volunteer 4 01h 35m 32s 89.378 km
volunteer 5 02h 39m 05s 210.646 km
volunteer 6 03h 00m 59s 51.712 km

transport classes
bike 45h 22m 51s 981.988 km
bus 03h 28m 37s 79.403 km
car 27h 16m 55s 1,611.907 km
train 05h 52m 15s 578.631 km
walk 17h 29m 15s 65.929 km

totals 99h 29m 53s 3,317.858 km

Table 4.1: Summary of data-set.

4.7.2 Data-set resampling

There is some variation in how well different transportation modes are represented, for ex-
ample, approximately half of the data-set by duration is cycling data, though by distance
car data dominates. I made use of Weka’s Resample class to produce random subsamples
of the data-set, within which the class distributions are approximately uniform. This is
important in order to ensure that the evaluation is not biased; without resampling even a
null classifier could provide a true positive rate of around 0.5 just by using its knowledge
of the prior distributions and classifying all instances as cycling.
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Chapter 5

Conclusion

5.1 Result

All of the required success criterion set out in appendix D have been met. The extension
activity of implementing a third classifier is covered by the creation of classifiers using
non-GPS/accelerometer data.

An application for collecting sensor data with transportation mode labels was created
and used to assemble a substantial data-set for training and testing classifiers with. A
framework for generation and refinement of sensor features was created. A test harness
was created and used to generate and evaluate a substantial number of segment classifiers,
which infer the mode of transport of 10 second segments of routes where the mode of
transport may be one of {bike, bus, car, train, walk}. Although not required by the
success criterion it became apparent that mapping of the data-set would provide a number
of useful insights and so an OSM based map system was created and used to visualise
feature values and segment misclassifications.

As well as producing GPS and accelerometer feature based classifiers of comparable
accuracy to those in the literature I found that orientation features produce very good
results (recall 0.959 with a kNN classifier), while magnetic field data give respectable
results with recall of 0.715 with a C4.5 Decision Tree. I also found that GPS inference
could be significantly enhanced by using GPS satellite data (recall increases from 0.787 to
0.837 with a C4.5 Decision Tree). The insight is that GPS satellite data will indicate where
location data are inaccurate, which firstly allows the classifier to place less confidence in
the location data and secondly is information in itself.

5.2 Future Directions

5.2.1 Choice of parameters

When starting the project my intention was that it would primarily be an investigation
of a relatively small number of fairly different algorithms, varying in terms of what in-
stance classifiers they used, what segmentation methods they used and also what, if any,
smoothing methods they used (e.g. DHMM), but being fairly similar in terms of what
sensor data and thus what features they used.
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The direction of the project has deviated slightly from the original plan, in that more
classifiers have been constructed and evaluated and more sensor data types and more
features have been used and generated for those classifiers. This is in part due to the fact
that my own preliminary findings1 indicated that - consistent with the existing work in
the area - the choice of machine learning algorithm is actually not of much significance,
typically making a difference of only a few percent at most in terms of True Positive
(TP) rate (the Naive Bayes classifier being one exception). It is also in part due to
limitations of the data-set which in turn were caused by limitations of what could be
asked of volunteers; since sample routes contain traces of only one transportation mode
it was not feasible to investigate smoothing methods, and some types of segmentation
(e.g. walk vs. non walk) were also ruled out.

These two factors combined to push the project into primarily investigating which
sensor types and derived features are most informative for segment classification. With
more time I would investigate further the definitions of the sensor features used. As
figures C.1 and C.2 show, some features do not appear to be providing much information
to classifiers and may either be fundamentally flawed or require refinement.

5.2.2 Personal energy metering

The accuracy of the best resulting classifier (recall of 97.8%) is very promising and it
would really be good to develop a standalone Android application for personal trans-
portation energy metering. Better yet would be to automate the personal transportation
energy metering component of the Energy Meter2 application I created as part of my
Undergraduate Research Opportunities Program (UROP).

5.3 Final Words

Despite a number of problems including the timing and power3 issues in Android’s sensor
system and the growth of the data-set beyond a size that would fit in physical memory,
I believe the project has been a great success. It has developed a number of classifiers
greater in accuracy than many of those developed by related works4.

In addition to testing approaches from existing literature, I have been able to confirm
my original hypotheses that magnetic field strength and GPS satellite information are
useful data sources. Finally, I found that orientation sensor information is a strong data
source.

1I actually tested a much larger range of classifiers than documented, and found most to perform
similarly. As a result of this finding I decided to focus my efforts on developing and testing new sensor
features.

2http://www.cl.cam.ac.uk/research/dtg/summer/
3http://code.google.com/p/android/issues/detail?id=3708
4However, direct comparisons are not particularly meaningful due to the variation in the classes

supported; classifiers that distinguish between a larger number of classes, particularly those which don’t
merge similar classes e.g. buses and cars may struggle to compete with those which don’t.
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Appendix A

Classifier Results

A.1 Single Sensor Classifiers

A.1.1 Accelerometer Classifiers

MAGNITUDE_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.867 0.587 0.614 0.867 0.719 0.676 BIKE

0 0 0 0 0 0.65 BUS

0.235 0.118 0.39 0.235 0.293 0.596 CAR

0.001 0 0.154 0.001 0.003 0.753 TRAIN

0.477 0.058 0.585 0.477 0.526 0.797 WALK

Weighted Avg. 0.578 0.342 0.508 0.578 0.522 0.677

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.964 0.832 0.555 0.964 0.705 0.691 BIKE

0 0 0 0 0 0.678 BUS

0.004 0.001 0.474 0.004 0.008 0.548 CAR

0 0 0 0 0 0.788 TRAIN

0.416 0.043 0.627 0.416 0.5 0.802 WALK

Weighted Avg. 0.562 0.439 0.496 0.562 0.441 0.677

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.594 0.435 0.595 0.594 0.595 0.579 BIKE

0.062 0.037 0.062 0.062 0.062 0.512 BUS

0.281 0.233 0.279 0.281 0.28 0.526 CAR

0.101 0.05 0.103 0.101 0.102 0.524 TRAIN

0.406 0.103 0.404 0.406 0.405 0.651 WALK

Weighted Avg. 0.444 0.302 0.444 0.444 0.444 0.571

MAGNITUDE_LOW_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.817 0.256 0.775 0.817 0.796 0.838 BIKE

0.003 0.001 0.13 0.003 0.006 0.835 BUS

0.761 0.163 0.601 0.761 0.671 0.864 CAR

0.281 0.035 0.308 0.281 0.294 0.871 TRAIN

0.414 0.04 0.64 0.414 0.503 0.758 WALK

Weighted Avg. 0.685 0.18 0.664 0.685 0.666 0.834

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.804 0.216 0.801 0.804 0.803 0.835 BIKE
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0 0 0 0 0 0.826 BUS

0.836 0.298 0.475 0.836 0.605 0.872 CAR

0 0 0 0 0 0.864 TRAIN

0.284 0.01 0.83 0.284 0.423 0.703 WALK

Weighted Avg. 0.663 0.186 0.653 0.663 0.626 0.826

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.723 0.297 0.724 0.723 0.724 0.712 BIKE

0.107 0.035 0.105 0.107 0.106 0.534 BUS

0.525 0.152 0.527 0.525 0.526 0.684 CAR

0.185 0.045 0.188 0.185 0.187 0.569 TRAIN

0.406 0.104 0.402 0.406 0.404 0.651 WALK

Weighted Avg. 0.577 0.21 0.577 0.577 0.577 0.682

MAGNITUDE_LOW_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.857 0.482 0.657 0.857 0.744 0.743 BIKE

0 0 0 0 0 0.813 BUS

0.326 0.12 0.465 0.326 0.383 0.666 CAR

0.002 0 0.214 0.002 0.004 0.827 TRAIN

0.68 0.062 0.654 0.68 0.667 0.855 WALK

Weighted Avg. 0.624 0.288 0.562 0.624 0.578 0.748

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.962 0.83 0.556 0.962 0.704 0.744 BIKE

0 0 0 0 0 0.832 BUS

0 0 0 0 0 0.711 CAR

0 0 0 0 0 0.837 TRAIN

0.507 0.032 0.732 0.507 0.599 0.859 WALK

Weighted Avg. 0.574 0.435 0.396 0.574 0.454 0.761

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.628 0.398 0.63 0.628 0.629 0.615 BIKE

0.1 0.035 0.101 0.1 0.1 0.534 BUS

0.33 0.219 0.327 0.33 0.329 0.555 CAR

0.134 0.048 0.135 0.134 0.135 0.539 TRAIN

0.524 0.081 0.525 0.524 0.524 0.722 WALK

Weighted Avg. 0.494 0.276 0.494 0.494 0.494 0.609

MAGNITUDE_MAXIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.837 0.326 0.735 0.837 0.783 0.808 BIKE

0 0 0 0 0 0.815 BUS

0.632 0.179 0.533 0.632 0.578 0.784 CAR

0.315 0.012 0.588 0.315 0.41 0.873 TRAIN

0.431 0.033 0.695 0.431 0.532 0.808 WALK

Weighted Avg. 0.669 0.218 0.645 0.669 0.647 0.806

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.812 0.31 0.739 0.812 0.774 0.792 BIKE

0 0 0 0 0 0.82 BUS

0.636 0.26 0.44 0.636 0.52 0.792 CAR

0 0 0 0 0 0.875 TRAIN
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0.393 0.023 0.749 0.393 0.516 0.752 WALK

Weighted Avg. 0.634 0.228 0.601 0.634 0.604 0.792

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.686 0.344 0.683 0.686 0.685 0.675 BIKE

0.107 0.034 0.11 0.107 0.108 0.532 BUS

0.41 0.185 0.416 0.41 0.413 0.617 CAR

0.303 0.04 0.297 0.303 0.3 0.624 TRAIN

0.463 0.094 0.46 0.463 0.461 0.689 WALK

Weighted Avg. 0.544 0.241 0.543 0.544 0.544 0.655

MAGNITUDE_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.941 0.626 0.619 0.941 0.746 0.669 BIKE

0 0 0 0 0 0.696 BUS

0.235 0.05 0.601 0.235 0.338 0.678 CAR

0.31 0.011 0.61 0.31 0.411 0.788 TRAIN

0.518 0.014 0.867 0.518 0.649 0.803 WALK

Weighted Avg. 0.638 0.34 0.627 0.638 0.587 0.698

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.929 0.692 0.592 0.929 0.723 0.709 BIKE

0 0 0 0 0 0.832 BUS

0.099 0.082 0.281 0.099 0.146 0.602 CAR

0.119 0.015 0.311 0.119 0.172 0.688 TRAIN

0.489 0.008 0.912 0.489 0.637 0.692 WALK

Weighted Avg. 0.585 0.381 0.526 0.585 0.514 0.684

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.63 0.406 0.626 0.63 0.628 0.612 BIKE

0.1 0.035 0.101 0.1 0.1 0.535 BUS

0.348 0.208 0.35 0.348 0.349 0.571 CAR

0.281 0.039 0.287 0.281 0.284 0.622 TRAIN

0.537 0.079 0.538 0.537 0.537 0.726 WALK

Weighted Avg. 0.509 0.276 0.508 0.509 0.509 0.616

MAGNITUDE_MID_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.87 0.546 0.632 0.87 0.732 0.733 BIKE

0 0 0 0 0 0.662 BUS

0.277 0.126 0.415 0.277 0.332 0.645 CAR

0.002 0 0.25 0.002 0.004 0.78 TRAIN

0.539 0.051 0.645 0.539 0.587 0.833 WALK

Weighted Avg. 0.598 0.322 0.537 0.598 0.547 0.726

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.957 0.759 0.576 0.957 0.719 0.742 BIKE

0 0 0 0 0 0.611 BUS

0.069 0.022 0.501 0.069 0.122 0.577 CAR

0 0 0 0 0 0.785 TRAIN

0.48 0.04 0.674 0.48 0.561 0.817 WALK

Weighted Avg. 0.584 0.405 0.52 0.584 0.485 0.71
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IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.621 0.414 0.618 0.621 0.619 0.603 BIKE

0.04 0.037 0.04 0.04 0.04 0.501 BUS

0.304 0.223 0.305 0.304 0.305 0.539 CAR

0.145 0.048 0.146 0.145 0.145 0.551 TRAIN

0.449 0.093 0.453 0.449 0.451 0.68 WALK

Weighted Avg. 0.472 0.287 0.471 0.472 0.471 0.592

MAGNITUDE_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.852 0.522 0.638 0.852 0.73 0.709 BIKE

0 0 0 0 0 0.734 BUS

0.311 0.123 0.449 0.311 0.368 0.641 CAR

0.006 0.001 0.178 0.006 0.011 0.83 TRAIN

0.593 0.057 0.643 0.593 0.617 0.825 WALK

Weighted Avg. 0.606 0.31 0.544 0.606 0.559 0.717

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.96 0.856 0.547 0.96 0.697 0.706 BIKE

0 0 0 0 0 0.771 BUS

0 0 0 0 0 0.601 CAR

0 0 0 0 0 0.848 TRAIN

0.46 0.026 0.752 0.46 0.571 0.807 WALK

Weighted Avg. 0.566 0.448 0.395 0.566 0.446 0.705

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.602 0.433 0.6 0.602 0.601 0.584 BIKE

0.092 0.036 0.09 0.092 0.091 0.526 BUS

0.292 0.224 0.295 0.292 0.294 0.535 CAR

0.145 0.046 0.15 0.145 0.147 0.547 TRAIN

0.485 0.091 0.478 0.485 0.481 0.698 WALK

Weighted Avg. 0.466 0.297 0.465 0.466 0.465 0.585

MAGNITUDE_MINIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.798 0.358 0.706 0.798 0.749 0.784 BIKE

0 0 0 0 0 0.796 BUS

0.638 0.186 0.524 0.638 0.575 0.788 CAR

0.001 0 0.143 0.001 0.001 0.795 TRAIN

0.473 0.055 0.595 0.473 0.527 0.799 WALK

Weighted Avg. 0.639 0.24 0.589 0.639 0.606 0.788

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.819 0.406 0.685 0.819 0.746 0.753 BIKE

0 0 0 0 0 0.794 BUS

0.605 0.261 0.428 0.605 0.501 0.74 CAR

0 0 0 0 0 0.771 TRAIN

0.171 0.012 0.715 0.171 0.277 0.752 WALK

Weighted Avg. 0.598 0.276 0.565 0.598 0.55 0.752

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.66 0.373 0.656 0.66 0.658 0.649 BIKE

0.108 0.036 0.104 0.108 0.106 0.542 BUS

54



0.439 0.177 0.443 0.439 0.441 0.637 CAR

0.163 0.048 0.158 0.163 0.16 0.565 TRAIN

0.387 0.102 0.395 0.387 0.391 0.646 WALK

Weighted Avg. 0.519 0.256 0.519 0.519 0.519 0.637

MAGNITUDE_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.823 0.24 0.787 0.823 0.805 0.853 BIKE

0.002 0 0.167 0.002 0.004 0.818 BUS

0.708 0.165 0.58 0.708 0.638 0.83 CAR

0.276 0.031 0.332 0.276 0.301 0.863 TRAIN

0.616 0.029 0.783 0.616 0.689 0.873 WALK

Weighted Avg. 0.705 0.171 0.689 0.705 0.69 0.85

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.629 0.083 0.891 0.629 0.737 0.859 BIKE

0 0 0 0 0 0.786 BUS

0.92 0.405 0.422 0.92 0.579 0.813 CAR

0 0 0 0 0 0.851 TRAIN

0.582 0.021 0.829 0.582 0.684 0.779 WALK

Weighted Avg. 0.636 0.145 0.687 0.636 0.624 0.833

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.734 0.292 0.731 0.734 0.732 0.72 BIKE

0.113 0.035 0.111 0.113 0.112 0.542 BUS

0.475 0.164 0.482 0.475 0.478 0.653 CAR

0.196 0.046 0.194 0.196 0.195 0.574 TRAIN

0.573 0.074 0.571 0.573 0.572 0.748 WALK

Weighted Avg. 0.595 0.206 0.595 0.595 0.595 0.693

All accelerometer features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.938 0.093 0.916 0.938 0.927 0.938 BIKE

0.62 0.011 0.681 0.62 0.649 0.816 BUS

0.868 0.042 0.868 0.868 0.868 0.92 CAR

0.727 0.015 0.726 0.727 0.726 0.863 TRAIN

0.777 0.028 0.828 0.777 0.802 0.892 WALK

Weighted Avg. 0.874 0.064 0.873 0.874 0.873 0.918

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.708 0.078 0.907 0.708 0.795 0.854 BIKE

0.521 0.082 0.198 0.521 0.287 0.888 BUS

0.445 0.077 0.65 0.445 0.528 0.846 CAR

0.697 0.178 0.18 0.697 0.286 0.879 TRAIN

0.592 0.043 0.701 0.592 0.642 0.754 WALK

Weighted Avg. 0.619 0.078 0.749 0.619 0.662 0.84

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.931 0.087 0.921 0.931 0.926 0.922 BIKE

0.579 0.011 0.679 0.579 0.625 0.782 BUS

0.874 0.047 0.856 0.874 0.865 0.912 CAR

0.736 0.014 0.746 0.736 0.741 0.863 TRAIN

0.789 0.03 0.817 0.789 0.803 0.881 WALK

55



Weighted Avg. 0.873 0.062 0.871 0.873 0.872 0.905

A.1.2 GPS Location Classifiers

ALTITUDE_DECREASING_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.992 0.52 0.997 0.684 0.509 BIKE

0 0 0 0 0 0.492 BUS

0.006 0.004 0.36 0.006 0.012 0.502 CAR

0.008 0.001 0.279 0.008 0.016 0.524 TRAIN

0 0 0 0 0 0.507 WALK

Weighted Avg. 0.519 0.516 0.373 0.519 0.359 0.507

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.996 0.988 0.521 0.996 0.684 0.521 BIKE

0 0 0 0 0 0.545 BUS

0 0 0 0 0 0.521 CAR

0.024 0.003 0.283 0.024 0.044 0.524 TRAIN

0.007 0.003 0.277 0.007 0.013 0.488 WALK

Weighted Avg. 0.519 0.513 0.326 0.519 0.359 0.517

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.994 0.985 0.521 0.994 0.684 0.519 BIKE

0 0 0 0 0 0.541 BUS

0.008 0.005 0.315 0.008 0.015 0.519 CAR

0.008 0.001 0.297 0.008 0.015 0.507 TRAIN

0.005 0.003 0.25 0.005 0.01 0.524 WALK

Weighted Avg. 0.519 0.513 0.4 0.519 0.361 0.52

ALTITUDE_GAIN_MAXIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.996 0.986 0.522 0.996 0.685 0.512 BIKE

0 0 0 0 0 0.503 BUS

0 0 0 0 0 0.499 CAR

0.013 0.002 0.237 0.013 0.024 0.527 TRAIN

0.01 0.005 0.252 0.01 0.019 0.508 WALK

Weighted Avg. 0.519 0.513 0.32 0.519 0.359 0.509

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.988 0.963 0.525 0.988 0.686 0.512 BIKE

0 0 0 0 0 0.491 BUS

0 0 0 0 0 0.499 CAR

0.023 0.004 0.246 0.023 0.042 0.53 TRAIN

0.031 0.017 0.232 0.031 0.054 0.506 WALK

Weighted Avg. 0.518 0.502 0.32 0.518 0.366 0.508

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.996 0.987 0.521 0.996 0.684 0.513 BIKE

0 0 0 0 0 0.539 BUS

0.001 0.001 0.129 0.001 0.001 0.515 CAR

0.004 0.001 0.208 0.004 0.007 0.52 TRAIN

0.011 0.005 0.28 0.011 0.022 0.524 WALK
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Weighted Avg. 0.519 0.513 0.354 0.519 0.359 0.516

ALTITUDE_INCREASING_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.994 0.978 0.523 0.994 0.685 0.508 BIKE

0 0 0 0 0 0.5 BUS

0.002 0.001 0.333 0.002 0.004 0.502 CAR

0.041 0.005 0.328 0.041 0.073 0.524 TRAIN

0.013 0.004 0.333 0.013 0.025 0.508 WALK

Weighted Avg. 0.52 0.509 0.419 0.52 0.364 0.507

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.987 0.521 0.997 0.685 0.509 BIKE

0 0 0 0 0 0.532 BUS

0 0 0 0 0 0.523 CAR

0.026 0.004 0.253 0.026 0.047 0.527 TRAIN

0.005 0.002 0.317 0.005 0.01 0.493 WALK

Weighted Avg. 0.519 0.513 0.331 0.519 0.359 0.511

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.992 0.975 0.524 0.992 0.685 0.51 BIKE

0 0 0 0 0 0.53 BUS

0.006 0.006 0.258 0.006 0.012 0.514 CAR

0.042 0.005 0.324 0.042 0.075 0.513 TRAIN

0.009 0.003 0.375 0.009 0.018 0.525 WALK

Weighted Avg. 0.52 0.508 0.407 0.52 0.365 0.514

ALTITUDE_LOSS_MAXIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.999 0.999 0.519 0.999 0.683 0.502 BIKE

0 0 0 0 0 0.497 BUS

0 0 0 0 0 0.499 CAR

0 0 0 0 0 0.507 TRAIN

0.001 0.001 0.133 0.001 0.002 0.502 WALK

Weighted Avg. 0.519 0.519 0.289 0.519 0.355 0.502

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.99 0.521 0.997 0.684 0.505 BIKE

0 0 0 0 0 0.5 BUS

0 0 0 0 0 0.5 CAR

0.03 0.005 0.261 0.03 0.054 0.513 TRAIN

0.001 0 0.25 0.001 0.002 0.502 WALK

Weighted Avg. 0.519 0.514 0.321 0.519 0.358 0.504

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.992 0.52 0.997 0.684 0.518 BIKE

0 0 0 0 0 0.546 BUS

0.001 0.001 0.171 0.001 0.002 0.515 CAR

0.007 0.001 0.323 0.007 0.014 0.512 TRAIN

0.004 0.003 0.221 0.004 0.008 0.522 WALK

Weighted Avg. 0.519 0.516 0.361 0.519 0.357 0.519

DISTANCE_TOTAL

57



J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.898 0.258 0.79 0.898 0.84 0.879 BIKE

0.007 0 0.389 0.007 0.014 0.641 BUS

0.644 0.06 0.774 0.644 0.703 0.835 CAR

0.235 0.001 0.923 0.235 0.375 0.815 TRAIN

0.81 0.087 0.615 0.81 0.699 0.939 WALK

Weighted Avg. 0.755 0.161 0.753 0.755 0.731 0.865

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.805 0.217 0.8 0.805 0.802 0.839 BIKE

0 0 0 0 0 0.567 BUS

0.549 0.048 0.786 0.549 0.646 0.765 CAR

0.121 0 0.966 0.121 0.215 0.801 TRAIN

0.946 0.19 0.461 0.946 0.62 0.855 WALK

Weighted Avg. 0.697 0.152 0.726 0.697 0.676 0.811

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.774 0.202 0.805 0.774 0.789 0.795 BIKE

0.097 0.035 0.098 0.097 0.098 0.52 BUS

0.577 0.124 0.6 0.577 0.589 0.734 CAR

0.327 0.037 0.33 0.327 0.329 0.654 TRAIN

0.732 0.082 0.607 0.732 0.664 0.832 WALK

Weighted Avg. 0.671 0.15 0.674 0.671 0.672 0.768

HEADING_CHANGE_RATE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.518 BIKE

0 0 0 0 0 0.538 BUS

0 0 0 0 0 0.523 CAR

0 0 0 0 0 0.523 TRAIN

0 0 0 0 0 0.555 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.526

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.997 0.987 0.522 0.997 0.685 0.549 BIKE

0 0 0 0 0 0.615 BUS

0.004 0.003 0.286 0.004 0.007 0.536 CAR

0.005 0 0.368 0.005 0.01 0.534 TRAIN

0.01 0.003 0.392 0.01 0.019 0.614 WALK

Weighted Avg. 0.52 0.513 0.417 0.52 0.361 0.557

SPEED_MAXIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.968 0.396 0.725 0.968 0.829 0.869 BIKE
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0 0 0 0 0 0.548 BUS

0.644 0.049 0.808 0.644 0.717 0.819 CAR

0.232 0 0.979 0.232 0.375 0.818 TRAIN

0.556 0.022 0.814 0.556 0.66 0.946 WALK

Weighted Avg. 0.753 0.221 0.745 0.753 0.722 0.853

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.988 0.824 0.564 0.988 0.718 0.556 BIKE

0 0 0 0 0 0.539 BUS

0.235 0.03 0.716 0.235 0.354 0.774 CAR

0.001 0.011 0.007 0.001 0.002 0.706 TRAIN

0 0 0 0 0 0.871 WALK

Weighted Avg. 0.57 0.436 0.468 0.57 0.459 0.663

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.966 0.394 0.725 0.966 0.829 0.896 BIKE

0 0 0 0 0 0.724 BUS

0.646 0.051 0.803 0.646 0.716 0.855 CAR

0.234 0 0.979 0.234 0.378 0.837 TRAIN

0.554 0.022 0.814 0.554 0.659 0.952 WALK

Weighted Avg. 0.753 0.22 0.744 0.753 0.721 0.885

SPEED_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.949 0.411 0.714 0.949 0.815 0.852 BIKE

0 0 0 0 0 0.61 BUS

0.604 0.053 0.786 0.604 0.683 0.797 CAR

0.214 0.003 0.804 0.214 0.338 0.788 TRAIN

0.535 0.036 0.721 0.535 0.614 0.936 WALK

Weighted Avg. 0.729 0.231 0.711 0.729 0.697 0.839

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.988 0.673 0.613 0.988 0.757 0.845 BIKE

0 0 0 0 0 0.553 BUS

0.503 0.045 0.783 0.503 0.613 0.767 CAR

0.097 0.002 0.734 0.097 0.172 0.752 TRAIN

0 0 0 0 0 0.856 WALK

Weighted Avg. 0.641 0.36 0.548 0.641 0.551 0.812

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.943 0.415 0.71 0.943 0.81 0.869 BIKE

0.005 0.003 0.063 0.005 0.009 0.617 BUS

0.572 0.058 0.759 0.572 0.653 0.801 CAR

0.201 0.009 0.551 0.201 0.294 0.701 TRAIN

0.523 0.034 0.729 0.523 0.609 0.937 WALK

Weighted Avg. 0.716 0.235 0.692 0.716 0.685 0.844

SPEED_MINIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.955 0.445 0.698 0.955 0.807 0.867 BIKE

0 0 0 0 0 0.567 BUS

0.588 0.042 0.82 0.588 0.685 0.814 CAR

0.204 0 0.973 0.204 0.337 0.807 TRAIN
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0.507 0.035 0.713 0.507 0.592 0.92 WALK

Weighted Avg. 0.724 0.246 0.718 0.724 0.69 0.847

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.782 0.188 0.818 0.782 0.8 0.838 BIKE

0 0 0 0 0 0.564 BUS

0.541 0.037 0.824 0.541 0.653 0.741 CAR

0.121 0 0.994 0.121 0.216 0.646 TRAIN

0.942 0.233 0.411 0.942 0.572 0.858 WALK

Weighted Avg. 0.683 0.141 0.738 0.683 0.67 0.797

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.955 0.446 0.698 0.955 0.806 0.884 BIKE

0 0 0 0 0 0.692 BUS

0.588 0.042 0.819 0.588 0.685 0.835 CAR

0.203 0 0.976 0.203 0.337 0.826 TRAIN

0.506 0.035 0.713 0.506 0.592 0.924 WALK

Weighted Avg. 0.724 0.247 0.718 0.724 0.69 0.868

SPEED_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.968 0.839 0.554 0.968 0.705 0.652 BIKE

0 0 0 0 0 0.7 BUS

0.211 0.042 0.62 0.211 0.315 0.73 CAR

0.098 0.003 0.644 0.098 0.17 0.684 TRAIN

0.014 0.001 0.632 0.014 0.027 0.803 WALK

Weighted Avg. 0.561 0.446 0.566 0.561 0.456 0.697

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.991 0.994 0.518 0.991 0.681 0.502 BIKE

0 0 0 0 0 0.462 BUS

0 0 0 0 0 0.487 CAR

0 0 0 0 0 0.476 TRAIN

0.007 0.007 0.141 0.007 0.014 0.514 WALK

Weighted Avg. 0.516 0.517 0.29 0.516 0.355 0.497

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.867 0.444 0.678 0.867 0.761 0.813 BIKE

0.088 0.028 0.108 0.088 0.097 0.573 BUS

0.527 0.101 0.627 0.527 0.573 0.754 CAR

0.18 0.025 0.292 0.18 0.223 0.682 TRAIN

0.392 0.013 0.838 0.392 0.534 0.911 WALK

Weighted Avg. 0.649 0.259 0.647 0.649 0.628 0.797

STOP_RATE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.96 0.856 0.547 0.96 0.697 0.59 BIKE

0 0 0 0 0 0.541 BUS

0 0 0 0 0 0.554 CAR

0 0 0 0 0 0.531 TRAIN

0.238 0.065 0.387 0.238 0.294 0.724 WALK

Weighted Avg. 0.533 0.454 0.341 0.533 0.405 0.596
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NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.836 0.743 0.548 0.836 0.662 0.577 BIKE

0 0 0 0 0 0.524 BUS

0 0 0 0 0 0.555 CAR

0 0 0 0 0 0.522 TRAIN

0.486 0.161 0.342 0.486 0.401 0.717 WALK

Weighted Avg. 0.505 0.409 0.335 0.505 0.403 0.587

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.96 0.857 0.547 0.96 0.697 0.589 BIKE

0 0 0 0 0 0.55 BUS

0 0.001 0.125 0 0.001 0.551 CAR

0 0 0 0 0 0.525 TRAIN

0.233 0.064 0.385 0.233 0.29 0.723 WALK

Weighted Avg. 0.532 0.454 0.371 0.532 0.405 0.595

VELOCITY_CHANGE_RATE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.998 0.992 0.52 0.998 0.684 0.51 BIKE

0 0 0 0 0 0.507 BUS

0.003 0.002 0.38 0.003 0.006 0.503 CAR

0.023 0.002 0.402 0.023 0.044 0.544 TRAIN

0 0 0 0 0 0.508 WALK

Weighted Avg. 0.52 0.515 0.384 0.52 0.359 0.51

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.977 0.954 0.525 0.977 0.683 0.51 BIKE

0 0 0 0 0 0.503 BUS

0.022 0.018 0.288 0.022 0.041 0.5 CAR

0.068 0.013 0.234 0.068 0.106 0.551 TRAIN

0 0 0 0 0 0.509 WALK

Weighted Avg. 0.516 0.5 0.355 0.516 0.37 0.509

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.998 0.993 0.52 0.998 0.684 0.51 BIKE

0 0 0 0 0 0.514 BUS

0.004 0.001 0.481 0.004 0.008 0.502 CAR

0.023 0.001 0.478 0.023 0.043 0.545 TRAIN

0 0 0 0 0 0.507 WALK

Weighted Avg. 0.52 0.516 0.413 0.52 0.359 0.509

All GPS location features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.892 0.188 0.837 0.892 0.864 0.908 BIKE

0.068 0.015 0.148 0.068 0.093 0.645 BUS

0.722 0.075 0.756 0.722 0.738 0.863 CAR

0.451 0.007 0.784 0.451 0.573 0.839 TRAIN

0.83 0.052 0.733 0.83 0.778 0.947 WALK

Weighted Avg. 0.787 0.124 0.773 0.787 0.776 0.889

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.781 0.206 0.804 0.781 0.792 0.844 BIKE

0.024 0.007 0.118 0.024 0.04 0.638 BUS
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0.561 0.054 0.771 0.561 0.65 0.764 CAR

0.155 0.011 0.434 0.155 0.228 0.795 TRAIN

0.876 0.191 0.441 0.876 0.586 0.86 WALK

Weighted Avg. 0.68 0.149 0.697 0.68 0.669 0.816

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.829 0.16 0.848 0.829 0.839 0.844 BIKE

0.14 0.033 0.141 0.14 0.14 0.544 BUS

0.674 0.1 0.685 0.674 0.68 0.791 CAR

0.473 0.022 0.541 0.473 0.505 0.72 TRAIN

0.805 0.06 0.697 0.805 0.747 0.882 WALK

Weighted Avg. 0.743 0.119 0.744 0.743 0.743 0.819

A.1.3 GPS Satellite Classifiers

SATELLITE_COUNT_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.973 0.838 0.556 0.973 0.708 0.611 BIKE

0 0 0 0 0 0.659 BUS

0.049 0.011 0.594 0.049 0.091 0.573 CAR

0.118 0.013 0.331 0.118 0.174 0.75 TRAIN

0.168 0.033 0.468 0.168 0.247 0.661 WALK

Weighted Avg. 0.548 0.443 0.52 0.548 0.435 0.618

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.97 0.824 0.56 0.97 0.71 0.638 BIKE

0 0 0 0 0 0.692 BUS

0.005 0 1 0.005 0.011 0.571 CAR

0 0 0 0 0 0.795 TRAIN

0.253 0.072 0.375 0.253 0.302 0.665 WALK

Weighted Avg. 0.542 0.438 0.589 0.542 0.415 0.636

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.969 0.827 0.558 0.969 0.708 0.642 BIKE

0.003 0.001 0.107 0.003 0.006 0.684 BUS

0.054 0.014 0.551 0.054 0.099 0.593 CAR

0.152 0.018 0.327 0.152 0.208 0.771 TRAIN

0.153 0.032 0.452 0.153 0.228 0.678 WALK

Weighted Avg. 0.547 0.438 0.512 0.547 0.437 0.644

SNR_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.943 0.609 0.626 0.943 0.752 0.701 BIKE

0 0 0 0 0 0.715 BUS

0.327 0.025 0.81 0.327 0.466 0.664 CAR

0.18 0.018 0.357 0.18 0.239 0.859 TRAIN

0.239 0.067 0.38 0.239 0.294 0.659 WALK

Weighted Avg. 0.614 0.333 0.597 0.614 0.56 0.695

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.937 0.584 0.634 0.937 0.756 0.747 BIKE

0 0 0 0 0 0.784 BUS
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0.329 0.025 0.81 0.329 0.468 0.701 CAR

0.123 0.011 0.395 0.123 0.188 0.913 TRAIN

0.268 0.092 0.335 0.268 0.297 0.648 WALK

Weighted Avg. 0.612 0.323 0.596 0.612 0.56 0.732

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.623 0.402 0.626 0.623 0.625 0.611 BIKE

0.087 0.035 0.087 0.087 0.087 0.529 BUS

0.408 0.188 0.411 0.408 0.41 0.609 CAR

0.238 0.042 0.24 0.238 0.239 0.596 TRAIN

0.218 0.14 0.212 0.218 0.215 0.541 WALK

Weighted Avg. 0.471 0.279 0.472 0.471 0.471 0.596

All GPS satellite features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.926 0.561 0.64 0.926 0.757 0.742 BIKE

0.073 0.01 0.217 0.073 0.109 0.722 BUS

0.381 0.06 0.673 0.381 0.487 0.72 CAR

0.308 0.023 0.432 0.308 0.36 0.85 TRAIN

0.187 0.039 0.451 0.187 0.265 0.674 WALK

Weighted Avg. 0.62 0.313 0.593 0.62 0.574 0.731

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.928 0.56 0.641 0.928 0.759 0.759 BIKE

0 0 0 0 0 0.79 BUS

0.318 0.024 0.808 0.318 0.457 0.71 CAR

0.379 0.033 0.389 0.379 0.384 0.915 TRAIN

0.187 0.087 0.271 0.187 0.221 0.687 WALK

Weighted Avg. 0.607 0.311 0.59 0.607 0.558 0.746

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.652 0.382 0.648 0.652 0.65 0.634 BIKE

0.106 0.034 0.108 0.106 0.107 0.539 BUS

0.439 0.179 0.441 0.439 0.44 0.628 CAR

0.303 0.04 0.299 0.303 0.301 0.628 TRAIN

0.258 0.126 0.262 0.258 0.26 0.565 WALK

Weighted Avg. 0.503 0.264 0.502 0.503 0.503 0.618

A.1.4 Light Level Classifiers

MAGNITUDE_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.499 BIKE

0 0 0 0 0 0.498 BUS
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0 0 0.333 0 0 0.5 CAR

0 0 0 0 0 0.502 TRAIN

0 0 0 0 0 0.498 WALK

Weighted Avg. 0.519 0.519 0.351 0.519 0.355 0.499

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0 0 0 0 0 0.499 BIKE

0 0 0 0 0 0.501 BUS

0.998 0.999 0.243 0.998 0.391 0.5 CAR

0 0 0 0 0 0.501 TRAIN

0.002 0.001 0.296 0.002 0.004 0.501 WALK

Weighted Avg. 0.243 0.244 0.103 0.243 0.096 0.5

MAGNITUDE_LOW_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.499 TRAIN

0 0 0 0 0 0.499 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.999 0.997 0.519 0.999 0.684 0.501 BIKE

0 0 0 0 0 0.5 BUS

0.001 0.001 0.235 0.001 0.002 0.5 CAR

0 0 0 0 0 0.501 TRAIN

0 0 0 0 0 0.501 WALK

Weighted Avg. 0.519 0.518 0.327 0.519 0.355 0.501

MAGNITUDE_LOW_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.499 WALK
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Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.999 0.997 0.519 0.999 0.684 0.501 BIKE

0 0 0 0 0 0.5 BUS

0.002 0.001 0.289 0.002 0.003 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.501 WALK

Weighted Avg. 0.519 0.518 0.34 0.519 0.356 0.501

MAGNITUDE_MAXIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0.999 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.498 BUS

0.001 0 0.75 0.001 0.002 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.499 WALK

Weighted Avg. 0.519 0.519 0.452 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0 0.001 0.214 0 0 0.5 BIKE

0 0 0 0 0 0.501 BUS

0.999 0.999 0.243 0.999 0.391 0.5 CAR

0 0 0 0 0 0.502 TRAIN

0.002 0 0.5 0.002 0.003 0.501 WALK

Weighted Avg. 0.243 0.244 0.244 0.243 0.096 0.5

MAGNITUDE_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0.999 0.519 1 0.683 0.499 BIKE

0 0 0 0 0 0.499 BUS

0.001 0 0.75 0.001 0.002 0.5 CAR

0 0 0 0 0 0.502 TRAIN

0 0 0 0 0 0.498 WALK

Weighted Avg. 0.519 0.519 0.452 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class
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0 0.001 0.2 0 0 0.442 BIKE

0 0 0 0 0 0.54 BUS

0.999 0.999 0.243 0.999 0.391 0.516 CAR

0 0 0 0 0 0.54 TRAIN

0.001 0 0.455 0.001 0.003 0.477 WALK

Weighted Avg. 0.243 0.244 0.23 0.243 0.096 0.474

MAGNITUDE_MID_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.499 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.999 0.997 0.519 0.999 0.684 0.501 BIKE

0 0 0 0 0 0.5 BUS

0.002 0.001 0.349 0.002 0.005 0.5 CAR

0 0 0 0 0 0.501 TRAIN

0 0 0 0 0 0.501 WALK

Weighted Avg. 0.519 0.518 0.355 0.519 0.356 0.501

MAGNITUDE_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.999 0.997 0.519 0.999 0.684 0.501 BIKE

0 0 0 0 0 0.5 BUS

0.002 0.001 0.349 0.002 0.005 0.5 CAR
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0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.518 0.355 0.519 0.356 0.5

MAGNITUDE_MINIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.499 BIKE

0 0 0 0 0 0.499 BUS

0.001 0 0.714 0.001 0.002 0.5 CAR

0 0 0 0 0 0.501 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.443 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0 0.016 0.005 0 0 0.49 BIKE

0 0 0 0 0 0.497 BUS

0.99 0.992 0.243 0.99 0.39 0.499 CAR

0 0 0 0 0 0.549 TRAIN

0.002 0 0.467 0.002 0.004 0.504 WALK

Weighted Avg. 0.241 0.25 0.13 0.241 0.096 0.497

MAGNITUDE_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.499 BIKE

0 0 0 0 0 0.498 BUS

0 0 0.5 0 0 0.499 CAR

0 0 0 0 0 0.501 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.391 0.519 0.355 0.499

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0 0 0.5 0 0 0.499 BIKE

0 0 0 0 0 0.501 BUS

0.999 0.999 0.243 0.999 0.391 0.5 CAR

0 0 0 0 0 0.501 TRAIN

0.002 0.001 0.292 0.002 0.004 0.501 WALK

Weighted Avg. 0.243 0.243 0.362 0.243 0.096 0.5
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All light level features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0 0 0 0 0 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.5 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.5

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0.999 0.519 1 0.683 0.5 BIKE

0 0 0 0 0 0.499 BUS

0.001 0 0.714 0.001 0.002 0.5 CAR

0 0 0 0 0 0.5 TRAIN

0 0 0 0 0 0.499 WALK

Weighted Avg. 0.519 0.519 0.443 0.519 0.355 0.5

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0 0 0.25 0 0 0.527 BIKE

0 0 0 0 0 0.457 BUS

0.999 0.999 0.243 0.999 0.391 0.513 CAR

0 0 0 0 0 0.457 TRAIN

0.001 0 0.357 0.001 0.003 0.522 WALK

Weighted Avg. 0.243 0.244 0.242 0.243 0.096 0.517

A.1.5 Magnetic Field Strength Classifiers

MAGNITUDE_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.902 0.727 0.572 0.902 0.7 0.632 BIKE

0 0 0 0 0 0.529 BUS

0.225 0.12 0.378 0.225 0.282 0.59 CAR

0.001 0 0.5 0.001 0.001 0.611 TRAIN

0.123 0.022 0.493 0.123 0.197 0.591 WALK

Weighted Avg. 0.541 0.41 0.488 0.541 0.461 0.611

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.992 0.96 0.527 0.992 0.688 0.629 BIKE

0 0 0 0 0 0.489 BUS

0 0 0.5 0 0.001 0.588 CAR

0.001 0.001 0.053 0.001 0.001 0.517 TRAIN

0.088 0.012 0.567 0.088 0.152 0.567 WALK

Weighted Avg. 0.528 0.5 0.482 0.528 0.38 0.599

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.563 0.471 0.563 0.563 0.563 0.546 BIKE

0.034 0.036 0.035 0.034 0.035 0.499 BUS

0.263 0.239 0.261 0.263 0.262 0.511 CAR

0.055 0.051 0.057 0.055 0.056 0.502 TRAIN

0.197 0.141 0.193 0.197 0.195 0.533 WALK

Weighted Avg. 0.389 0.327 0.389 0.389 0.389 0.532
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MAGNITUDE_LOW_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.893 0.569 0.629 0.893 0.738 0.669 BIKE

0 0 0 0 0 0.564 BUS

0.386 0.18 0.408 0.386 0.397 0.612 CAR

0 0 0 0 0 0.665 TRAIN

0.11 0.018 0.506 0.11 0.18 0.6 WALK

Weighted Avg. 0.574 0.342 0.5 0.574 0.506 0.641

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.988 0.899 0.543 0.988 0.7 0.685 BIKE

0 0 0 0 0 0.524 BUS

0.052 0.029 0.363 0.052 0.091 0.622 CAR

0 0 0 0 0 0.674 TRAIN

0.07 0.012 0.511 0.07 0.123 0.588 WALK

Weighted Avg. 0.536 0.475 0.445 0.536 0.404 0.649

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.596 0.434 0.597 0.596 0.597 0.58 BIKE

0.059 0.038 0.057 0.059 0.058 0.51 BUS

0.292 0.228 0.292 0.292 0.292 0.533 CAR

0.094 0.053 0.091 0.094 0.092 0.522 TRAIN

0.193 0.136 0.196 0.193 0.194 0.527 WALK

Weighted Avg. 0.416 0.305 0.417 0.416 0.416 0.555

MAGNITUDE_LOW_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.905 0.425 0.697 0.905 0.787 0.759 BIKE

0.419 0.003 0.828 0.419 0.556 0.829 BUS

0.643 0.151 0.578 0.643 0.609 0.762 CAR

0.167 0.007 0.577 0.167 0.259 0.79 TRAIN

0.067 0.012 0.479 0.067 0.117 0.591 WALK

Weighted Avg. 0.661 0.26 0.634 0.661 0.609 0.739

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.953 0.655 0.611 0.953 0.745 0.806 BIKE

0.013 0.002 0.183 0.013 0.024 0.842 BUS

0.291 0.071 0.568 0.291 0.385 0.796 CAR

0 0 0 0 0 0.82 TRAIN

0.064 0.062 0.151 0.064 0.09 0.484 WALK

Weighted Avg. 0.576 0.367 0.484 0.576 0.494 0.758

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.678 0.346 0.679 0.678 0.678 0.665 BIKE

0.426 0.022 0.428 0.426 0.427 0.706 BUS

0.464 0.17 0.467 0.464 0.465 0.645 CAR

0.239 0.043 0.238 0.239 0.238 0.597 TRAIN

0.206 0.14 0.203 0.206 0.205 0.533 WALK

Weighted Avg. 0.524 0.245 0.524 0.524 0.524 0.639

MAGNITUDE_MAXIMUM
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J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.913 0.412 0.705 0.913 0.796 0.763 BIKE

0.484 0.006 0.764 0.484 0.592 0.827 BUS

0.653 0.151 0.582 0.653 0.616 0.769 CAR

0.175 0.003 0.754 0.175 0.283 0.803 TRAIN

0.071 0.01 0.557 0.071 0.126 0.579 WALK

Weighted Avg. 0.671 0.252 0.658 0.671 0.619 0.742

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.955 0.692 0.598 0.955 0.736 0.811 BIKE

0 0 0 0 0 0.852 BUS

0.249 0.061 0.57 0.249 0.347 0.803 CAR

0 0 0 0 0 0.829 TRAIN

0.073 0.063 0.166 0.073 0.102 0.488 WALK

Weighted Avg. 0.567 0.383 0.474 0.567 0.481 0.764

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.693 0.336 0.69 0.693 0.692 0.68 BIKE

0.486 0.02 0.484 0.486 0.485 0.737 BUS

0.469 0.171 0.469 0.469 0.469 0.651 CAR

0.257 0.039 0.267 0.257 0.262 0.607 TRAIN

0.215 0.135 0.216 0.215 0.215 0.541 WALK

Weighted Avg. 0.537 0.238 0.536 0.537 0.537 0.651

MAGNITUDE_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.92 0.386 0.72 0.92 0.808 0.779 BIKE

0.493 0.005 0.805 0.493 0.611 0.838 BUS

0.688 0.154 0.59 0.688 0.635 0.785 CAR

0.195 0.003 0.778 0.195 0.312 0.823 TRAIN

0.066 0.008 0.578 0.066 0.118 0.564 WALK

Weighted Avg. 0.683 0.239 0.674 0.683 0.631 0.753

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.954 0.619 0.624 0.954 0.755 0.828 BIKE

0.123 0.002 0.691 0.123 0.208 0.862 BUS

0.359 0.077 0.601 0.359 0.449 0.817 CAR

0 0 0 0 0 0.838 TRAIN

0.039 0.058 0.105 0.039 0.057 0.473 WALK

Weighted Avg. 0.593 0.349 0.512 0.593 0.517 0.775

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.71 0.318 0.706 0.71 0.708 0.697 BIKE

0.485 0.02 0.487 0.485 0.486 0.736 BUS

0.495 0.163 0.495 0.495 0.495 0.666 CAR

0.296 0.04 0.294 0.296 0.295 0.628 TRAIN

0.225 0.131 0.229 0.225 0.227 0.548 WALK

Weighted Avg. 0.556 0.227 0.555 0.556 0.555 0.665

MAGNITUDE_MID_HIGH_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.949 0.743 0.579 0.949 0.719 0.637 BIKE

0 0 0 0 0 0.534 BUS
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0.27 0.087 0.498 0.27 0.35 0.625 CAR

0.001 0 0.667 0.001 0.003 0.581 TRAIN

0.055 0.012 0.441 0.055 0.097 0.562 WALK

Weighted Avg. 0.566 0.409 0.522 0.566 0.473 0.616

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.988 0.895 0.544 0.988 0.702 0.662 BIKE

0 0 0 0 0 0.534 BUS

0.097 0.019 0.623 0.097 0.167 0.637 CAR

0 0 0 0 0 0.53 TRAIN

0.056 0.013 0.433 0.056 0.099 0.544 WALK

Weighted Avg. 0.545 0.471 0.497 0.545 0.419 0.627

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.583 0.45 0.583 0.583 0.583 0.565 BIKE

0.043 0.036 0.044 0.043 0.043 0.503 BUS

0.305 0.225 0.304 0.305 0.304 0.541 CAR

0.058 0.052 0.058 0.058 0.058 0.5 TRAIN

0.175 0.143 0.174 0.175 0.175 0.517 WALK

Weighted Avg. 0.407 0.314 0.407 0.407 0.407 0.546

MAGNITUDE_MID_RANGE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.867 0.658 0.587 0.867 0.7 0.623 BIKE

0 0 0 0 0 0.525 BUS

0.287 0.142 0.394 0.287 0.332 0.582 CAR

0 0 0 0 0 0.585 TRAIN

0.17 0.036 0.446 0.17 0.246 0.6 WALK

Weighted Avg. 0.545 0.382 0.466 0.545 0.48 0.604

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.99 0.948 0.53 0.99 0.69 0.639 BIKE

0 0 0 0 0 0.483 BUS

0.004 0.003 0.32 0.004 0.007 0.585 CAR

0 0 0 0 0 0.526 TRAIN

0.101 0.015 0.542 0.101 0.171 0.566 WALK

Weighted Avg. 0.53 0.495 0.433 0.53 0.385 0.603

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.581 0.445 0.585 0.581 0.583 0.566 BIKE

0.033 0.038 0.033 0.033 0.033 0.497 BUS

0.287 0.234 0.283 0.287 0.285 0.525 CAR

0.067 0.051 0.068 0.067 0.067 0.509 TRAIN

0.187 0.141 0.186 0.187 0.186 0.524 WALK

Weighted Avg. 0.404 0.313 0.404 0.404 0.404 0.544

MAGNITUDE_MINIMUM

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.903 0.378 0.721 0.903 0.802 0.783 BIKE

0.451 0.002 0.893 0.451 0.599 0.845 BUS

0.701 0.175 0.563 0.701 0.625 0.782 CAR

0.223 0.005 0.697 0.223 0.338 0.819 TRAIN

0.05 0.004 0.698 0.05 0.093 0.568 WALK
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Weighted Avg. 0.676 0.24 0.684 0.676 0.622 0.756

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.948 0.583 0.637 0.948 0.762 0.823 BIKE

0.236 0.002 0.814 0.236 0.366 0.862 BUS

0.387 0.097 0.562 0.387 0.459 0.804 CAR

0 0 0 0 0 0.825 TRAIN

0.032 0.052 0.095 0.032 0.048 0.479 WALK

Weighted Avg. 0.6 0.334 0.512 0.6 0.528 0.769

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.702 0.323 0.701 0.702 0.702 0.691 BIKE

0.471 0.021 0.465 0.471 0.468 0.724 BUS

0.463 0.173 0.463 0.463 0.463 0.649 CAR

0.248 0.042 0.249 0.248 0.249 0.604 TRAIN

0.213 0.134 0.215 0.213 0.214 0.537 WALK

Weighted Avg. 0.54 0.232 0.539 0.54 0.539 0.655

MAGNITUDE_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.957 0.827 0.555 0.957 0.703 0.622 BIKE

0 0 0 0 0 0.551 BUS

0 0 0.25 0 0.001 0.5 CAR

0 0 0 0 0 0.663 TRAIN

0.302 0.071 0.422 0.302 0.352 0.667 WALK

Weighted Avg. 0.541 0.44 0.411 0.541 0.417 0.598

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.012 0.066 0.161 0.012 0.022 0.453 BIKE

0 0 0 0 0 0.496 BUS

0.964 0.957 0.245 0.964 0.391 0.503 CAR

0 0 0 0 0 0.512 TRAIN

0.012 0.002 0.505 0.012 0.024 0.582 WALK

Weighted Avg. 0.243 0.268 0.217 0.243 0.11 0.489

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.565 0.469 0.565 0.565 0.565 0.549 BIKE

0.054 0.037 0.054 0.054 0.054 0.511 BUS

0.263 0.236 0.263 0.263 0.263 0.515 CAR

0.083 0.051 0.084 0.083 0.083 0.515 TRAIN

0.234 0.134 0.232 0.234 0.233 0.551 WALK

Weighted Avg. 0.398 0.325 0.398 0.398 0.398 0.538

All magnetic field strength features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.862 0.239 0.795 0.862 0.827 0.842 BIKE

0.533 0.013 0.623 0.533 0.575 0.849 BUS

0.685 0.1 0.688 0.685 0.686 0.807 CAR

0.453 0.025 0.505 0.453 0.478 0.775 TRAIN

0.387 0.068 0.493 0.387 0.434 0.723 WALK

Weighted Avg. 0.715 0.16 0.703 0.715 0.707 0.812

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class
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0.92 0.416 0.705 0.92 0.798 0.85 BIKE

0.523 0.034 0.375 0.523 0.437 0.834 BUS

0.578 0.123 0.601 0.578 0.589 0.822 CAR

0.039 0.025 0.08 0.039 0.052 0.804 TRAIN

0.035 0.006 0.487 0.035 0.065 0.535 WALK

Weighted Avg. 0.645 0.25 0.602 0.645 0.586 0.794

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.816 0.226 0.796 0.816 0.806 0.795 BIKE

0.576 0.018 0.557 0.576 0.567 0.784 BUS

0.658 0.085 0.714 0.658 0.685 0.786 CAR

0.452 0.032 0.441 0.452 0.446 0.711 TRAIN

0.445 0.099 0.436 0.445 0.44 0.673 WALK

Weighted Avg. 0.695 0.155 0.695 0.695 0.695 0.77

A.1.6 Orientation Classifiers

X_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.951 0.881 0.538 0.951 0.687 0.577 BIKE

0.281 0.018 0.381 0.281 0.323 0.763 BUS

0.129 0.022 0.65 0.129 0.216 0.616 CAR

0.007 0.001 0.278 0.007 0.014 0.689 TRAIN

0.012 0.004 0.338 0.012 0.024 0.619 WALK

Weighted Avg. 0.538 0.464 0.516 0.538 0.426 0.606

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 1 0.519 1 0.683 0.538 BIKE

0 0 0 0 0 0.795 BUS

0 0 0 0 0 0.544 CAR

0 0 0 0 0 0.578 TRAIN

0 0 0 0 0 0.578 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.557

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.533 0.5 0.535 0.533 0.534 0.52 BIKE

0.169 0.031 0.175 0.169 0.172 0.572 BUS

0.311 0.222 0.31 0.311 0.311 0.546 CAR

0.109 0.051 0.108 0.109 0.108 0.532 TRAIN

0.185 0.143 0.182 0.185 0.184 0.522 WALK

Weighted Avg. 0.392 0.338 0.392 0.392 0.392 0.529

X_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.803 0.475 0.646 0.803 0.716 0.721 BIKE

0.011 0.001 0.379 0.011 0.021 0.765 BUS

0.49 0.186 0.46 0.49 0.475 0.698 CAR

0.001 0 0.083 0.001 0.001 0.703 TRAIN

0.287 0.06 0.453 0.287 0.351 0.706 WALK

Weighted Avg. 0.579 0.301 0.532 0.579 0.54 0.714

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class
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1 1 0.519 1 0.683 0.496 BIKE

0 0 0 0 0 0.671 BUS

0 0 0 0 0 0.517 CAR

0 0 0 0 0 0.523 TRAIN

0 0 0 0 0 0.702 WALK

Weighted Avg. 0.519 0.519 0.269 0.519 0.355 0.539

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.597 0.431 0.599 0.597 0.598 0.584 BIKE

0.107 0.036 0.103 0.107 0.105 0.54 BUS

0.325 0.215 0.327 0.325 0.326 0.553 CAR

0.09 0.052 0.089 0.09 0.09 0.523 TRAIN

0.269 0.128 0.266 0.269 0.268 0.572 WALK

Weighted Avg. 0.437 0.299 0.438 0.437 0.438 0.57

Y_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.887 0.104 0.902 0.887 0.894 0.949 BIKE

0.42 0.01 0.625 0.42 0.502 0.92 BUS

0.891 0.081 0.781 0.891 0.832 0.952 CAR

0.498 0.019 0.6 0.498 0.544 0.918 TRAIN

0.628 0.059 0.648 0.628 0.638 0.905 WALK

Weighted Avg. 0.812 0.084 0.809 0.812 0.808 0.94

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.953 0.606 0.629 0.953 0.758 0.776 BIKE

0 0 0 0 0 0.627 BUS

0.513 0.055 0.748 0.513 0.608 0.911 CAR

0.357 0.024 0.458 0.357 0.401 0.82 TRAIN

0.005 0.006 0.137 0.005 0.01 0.756 WALK

Weighted Avg. 0.639 0.33 0.553 0.639 0.564 0.803

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.855 0.156 0.855 0.855 0.855 0.851 BIKE

0.401 0.024 0.391 0.401 0.396 0.691 BUS

0.763 0.078 0.759 0.763 0.761 0.843 CAR

0.43 0.031 0.435 0.43 0.433 0.706 TRAIN

0.531 0.079 0.536 0.531 0.534 0.73 WALK

Weighted Avg. 0.745 0.114 0.745 0.745 0.745 0.818

Y_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.85 0.218 0.808 0.85 0.829 0.874 BIKE

0 0 0 0 0 0.765 BUS

0.736 0.135 0.637 0.736 0.683 0.854 CAR

0.384 0.029 0.422 0.384 0.402 0.895 TRAIN

0.585 0.045 0.692 0.585 0.634 0.877 WALK

Weighted Avg. 0.727 0.154 0.699 0.727 0.711 0.866

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.985 0.869 0.55 0.985 0.706 0.659 BIKE

0 0 0 0 0 0.49 BUS

0.018 0.026 0.183 0.018 0.032 0.501 CAR

74



0.05 0.009 0.232 0.05 0.082 0.583 TRAIN

0.185 0.01 0.761 0.185 0.297 0.82 WALK

Weighted Avg. 0.545 0.459 0.454 0.545 0.422 0.634

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.758 0.257 0.761 0.758 0.759 0.748 BIKE

0.071 0.034 0.074 0.071 0.072 0.522 BUS

0.541 0.146 0.544 0.541 0.543 0.698 CAR

0.278 0.041 0.277 0.278 0.278 0.629 TRAIN

0.521 0.088 0.505 0.521 0.513 0.718 WALK

Weighted Avg. 0.619 0.185 0.619 0.619 0.619 0.717

Z_MEAN

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.803 0.231 0.789 0.803 0.796 0.837 BIKE

0 0 0 0 0 0.679 BUS

0.81 0.133 0.662 0.81 0.729 0.883 CAR

0.047 0.003 0.486 0.047 0.086 0.721 TRAIN

0.613 0.093 0.533 0.613 0.57 0.846 WALK

Weighted Avg. 0.706 0.166 0.675 0.706 0.679 0.838

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.891 0.796 0.547 0.891 0.678 0.75 BIKE

0 0 0 0 0 0.61 BUS

0.254 0.123 0.4 0.254 0.311 0.692 CAR

0 0 0 0 0 0.616 TRAIN

0 0 0 0 0 0.778 WALK

Weighted Avg. 0.525 0.443 0.382 0.525 0.428 0.728

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.71 0.319 0.706 0.71 0.708 0.696 BIKE

0.108 0.034 0.11 0.108 0.109 0.537 BUS

0.59 0.133 0.588 0.59 0.589 0.73 CAR

0.125 0.05 0.122 0.125 0.123 0.544 TRAIN

0.407 0.098 0.417 0.407 0.412 0.657 WALK

Weighted Avg. 0.582 0.216 0.581 0.582 0.582 0.685

Z_VARIANCE

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.854 0.288 0.762 0.854 0.805 0.837 BIKE

0 0 0 0 0 0.794 BUS

0.63 0.155 0.566 0.63 0.597 0.788 CAR

0.203 0.019 0.372 0.203 0.262 0.873 TRAIN

0.605 0.035 0.751 0.605 0.67 0.846 WALK

Weighted Avg. 0.696 0.193 0.663 0.696 0.676 0.826

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.961 0.788 0.568 0.961 0.714 0.821 BIKE

0 0 0 0 0 0.775 BUS

0.046 0.02 0.426 0.046 0.083 0.76 CAR

0 0 0 0 0 0.839 TRAIN

0.534 0.02 0.818 0.534 0.646 0.804 WALK

Weighted Avg. 0.588 0.417 0.519 0.588 0.486 0.803
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IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.721 0.302 0.72 0.721 0.721 0.708 BIKE

0.106 0.035 0.105 0.106 0.105 0.538 BUS

0.437 0.181 0.438 0.437 0.438 0.626 CAR

0.215 0.044 0.214 0.215 0.214 0.587 TRAIN

0.54 0.079 0.542 0.54 0.541 0.735 WALK

Weighted Avg. 0.575 0.216 0.575 0.575 0.575 0.679

All orientation features

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.97 0.034 0.968 0.97 0.969 0.98 BIKE

0.835 0.005 0.874 0.835 0.854 0.931 BUS

0.967 0.011 0.967 0.967 0.967 0.981 CAR

0.928 0.004 0.935 0.928 0.931 0.974 TRAIN

0.894 0.02 0.887 0.894 0.89 0.956 WALK

Weighted Avg. 0.951 0.024 0.951 0.951 0.951 0.975

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.946 0.594 0.632 0.946 0.758 0.885 BIKE

0.271 0.033 0.244 0.271 0.257 0.841 BUS

0.184 0.019 0.755 0.184 0.296 0.901 CAR

0.302 0.01 0.639 0.302 0.41 0.878 TRAIN

0.537 0.022 0.81 0.537 0.646 0.887 WALK

Weighted Avg. 0.641 0.318 0.674 0.641 0.592 0.888

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.974 0.027 0.975 0.974 0.975 0.974 BIKE

0.898 0.004 0.9 0.898 0.899 0.953 BUS

0.967 0.01 0.97 0.967 0.968 0.979 CAR

0.936 0.004 0.922 0.936 0.929 0.965 TRAIN

0.914 0.015 0.912 0.914 0.913 0.951 WALK

Weighted Avg. 0.959 0.019 0.959 0.959 0.959 0.971

A.2 Multiple Sensor Classifiers

A.2.1 All Sensor Classifiers

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.99 0.016 0.986 0.99 0.988 0.989 BIKE

0.937 0.001 0.964 0.937 0.95 0.968 BUS

0.977 0.008 0.975 0.977 0.976 0.984 CAR

0.945 0.003 0.951 0.945 0.948 0.979 TRAIN

0.951 0.007 0.957 0.951 0.954 0.971 WALK

Weighted Avg. 0.976 0.011 0.976 0.976 0.976 0.984

NaiveBayes

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.912 0.126 0.886 0.912 0.899 0.946 BIKE

0.884 0.073 0.32 0.884 0.47 0.953 BUS

0.754 0.043 0.849 0.754 0.799 0.938 CAR

0.633 0.019 0.646 0.633 0.639 0.951 TRAIN

0.561 0.014 0.875 0.561 0.684 0.968 WALK
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Weighted Avg. 0.806 0.082 0.842 0.806 0.813 0.948

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.061 0.011 0.857 0.061 0.114 0.529 BIKE

0.024 0 0.96 0.024 0.047 0.513 BUS

0.777 0.524 0.323 0.777 0.456 0.628 CAR

0.236 0 0.994 0.236 0.382 0.621 TRAIN

0.712 0.303 0.288 0.712 0.41 0.706 WALK

Weighted Avg. 0.339 0.178 0.655 0.339 0.253 0.583

A.2.2 All Sensors except Light Level Classifiers

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.989 0.014 0.987 0.989 0.988 0.989 BIKE

0.953 0.002 0.959 0.953 0.956 0.973 BUS

0.977 0.007 0.977 0.977 0.977 0.983 CAR

0.946 0.003 0.955 0.946 0.95 0.978 TRAIN

0.955 0.007 0.958 0.955 0.957 0.975 WALK

Weighted Avg. 0.978 0.01 0.978 0.978 0.978 0.984

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.911 0.126 0.886 0.911 0.898 0.946 BIKE

0.88 0.074 0.318 0.88 0.467 0.952 BUS

0.752 0.044 0.848 0.752 0.797 0.939 CAR

0.639 0.02 0.643 0.639 0.641 0.951 TRAIN

0.561 0.013 0.879 0.561 0.685 0.968 WALK

Weighted Avg. 0.805 0.082 0.841 0.805 0.813 0.948

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.986 0.022 0.979 0.986 0.983 0.982 BIKE

0.924 0.003 0.921 0.924 0.922 0.958 BUS

0.977 0.007 0.979 0.977 0.978 0.985 CAR

0.958 0.002 0.965 0.958 0.961 0.978 TRAIN

0.933 0.008 0.952 0.933 0.942 0.962 WALK

Weighted Avg. 0.972 0.015 0.972 0.972 0.972 0.979

A.2.3 Accelerometer and Orientation Classifiers

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.974 0.032 0.97 0.974 0.972 0.974 BIKE

0.889 0.004 0.907 0.889 0.898 0.939 BUS

0.967 0.01 0.969 0.967 0.968 0.979 CAR

0.93 0.004 0.929 0.93 0.93 0.968 TRAIN

0.899 0.017 0.903 0.899 0.901 0.947 WALK

Weighted Avg. 0.956 0.022 0.955 0.956 0.956 0.97

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.781 0.1 0.894 0.781 0.834 0.887 BIKE

0.86 0.145 0.188 0.86 0.308 0.916 BUS

0.431 0.019 0.882 0.431 0.579 0.904 CAR

0.592 0.108 0.236 0.592 0.337 0.891 TRAIN

0.613 0.038 0.736 0.613 0.669 0.787 WALK
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Weighted Avg. 0.664 0.073 0.806 0.664 0.701 0.878

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.98 0.031 0.972 0.98 0.976 0.975 BIKE

0.92 0.003 0.934 0.92 0.927 0.96 BUS

0.973 0.008 0.976 0.973 0.975 0.983 CAR

0.941 0.004 0.929 0.941 0.935 0.969 TRAIN

0.905 0.012 0.931 0.905 0.918 0.947 WALK

Weighted Avg. 0.963 0.02 0.963 0.963 0.963 0.972

A.2.4 All non-GPS except Light Level Classifiers

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.981 0.022 0.98 0.981 0.98 0.982 BIKE

0.969 0.001 0.963 0.969 0.966 0.984 BUS

0.976 0.008 0.976 0.976 0.976 0.984 CAR

0.927 0.003 0.947 0.927 0.937 0.971 TRAIN

0.923 0.014 0.92 0.923 0.921 0.956 WALK

Weighted Avg. 0.968 0.015 0.968 0.968 0.968 0.978

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.87 0.135 0.874 0.87 0.872 0.92 BIKE

0.692 0.047 0.363 0.692 0.476 0.94 BUS

0.761 0.095 0.72 0.761 0.74 0.911 CAR

0.513 0.032 0.471 0.513 0.491 0.889 TRAIN

0.535 0.022 0.81 0.535 0.645 0.862 WALK

Weighted Avg. 0.768 0.1 0.787 0.768 0.771 0.909

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.982 0.028 0.974 0.982 0.978 0.977 BIKE

0.941 0.001 0.966 0.941 0.954 0.969 BUS

0.975 0.008 0.977 0.975 0.976 0.984 CAR

0.948 0.004 0.932 0.948 0.94 0.969 TRAIN

0.911 0.011 0.936 0.911 0.923 0.949 WALK

Weighted Avg. 0.967 0.018 0.967 0.967 0.967 0.974

A.2.5 All GPS Classifiers

J48 TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.915 0.142 0.874 0.915 0.894 0.918 BIKE

0.318 0.018 0.409 0.318 0.358 0.682 BUS

0.772 0.057 0.814 0.772 0.793 0.88 CAR

0.711 0.01 0.798 0.711 0.752 0.894 TRAIN

0.848 0.029 0.834 0.848 0.841 0.948 WALK

Weighted Avg. 0.837 0.093 0.832 0.837 0.834 0.903

NaiveBayes TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.788 0.222 0.793 0.788 0.79 0.878 BIKE

0.127 0.014 0.263 0.127 0.171 0.789 BUS

0.577 0.042 0.816 0.577 0.676 0.806 CAR

0.305 0.01 0.635 0.305 0.412 0.935 TRAIN

0.742 0.187 0.405 0.742 0.524 0.889 WALK
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Weighted Avg. 0.679 0.154 0.713 0.679 0.68 0.862

IBk TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.866 0.179 0.839 0.866 0.852 0.842 BIKE

0.259 0.026 0.279 0.259 0.269 0.616 BUS

0.732 0.071 0.768 0.732 0.749 0.828 CAR

0.672 0.014 0.727 0.672 0.698 0.823 TRAIN

0.694 0.054 0.688 0.694 0.691 0.822 WALK

Weighted Avg. 0.775 0.12 0.772 0.775 0.773 0.826
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Appendix B

Sensor Feature Visualisations

Figures B.1, B.2, B.3 and B.4 show the visualisations of sensor feature values.

(a) ACCELEROMETER-

MAGNITUDE-HIGH-RANGE

(b) ACCELEROMETER-

MAGNITUDE-LOW-MID-

RANGE

(c) ACCELEROMETER-

MAGNITUDE-LOW-RANGE

(d) ACCELEROMETER-

MAGNITUDE-MAXIMUM

(e) ACCELEROMETER-

MAGNITUDE-MEAN

(f) ACCELEROMETER-

MAGNITUDE-MID-HIGH-

RANGE

(g) ACCELEROMETER-

MAGNITUDE-MID-RANGE

(h) ACCELEROMETER-

MAGNITUDE-MINIMUM

(i) ACCELEROMETER-

MAGNITUDE-VARIANCE

Figure B.1: Feature visualisations
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(a) GPS-LOCATION-

ALTITUDE-DECREASING-

MEAN

(b) GPS-LOCATION-

ALTITUDE-GAIN-MAXIMUM

(c) GPS-LOCATION-

ALTITUDE-INCREASING-

MEAN

(d) GPS-LOCATION-

ALTITUDE-LOSS-MAXIMUM

(e) GPS-LOCATION-

DISTANCE-TOTAL

(f) GPS-LOCATION-

HEADING-CHANGE-RATE

(g) GPS-LOCATION-SPEED-

MAXIMUM

(h) GPS-LOCATION-SPEED-

MEAN

(i) GPS-LOCATION-SPEED-

MINIMUM

(j) GPS-LOCATION-SPEED-

VARIANCE

(k) GPS-LOCATION-STOP-

RATE

(l) GPS-LOCATION-

VELOCITY-CHANGE-RATE

Figure B.2: Feature visualisations
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(a) GPS-SATELLITES-

SATELLITE-COUNT-MEAN

(b) GPS-SATELLITES-SNR-

MEAN

(c) LIGHT-LEVEL-

MAGNITUDE-HIGH-RANGE

(d) LIGHT-LEVEL-

MAGNITUDE-LOW-MID-

RANGE

(e) LIGHT-LEVEL-

MAGNITUDE-LOW-RANGE

(f) LIGHT-LEVEL-

MAGNITUDE-MAXIMUM

(g) LIGHT-LEVEL-

MAGNITUDE-MEAN

(h) LIGHT-LEVEL-

MAGNITUDE-MID-HIGH-

RANGE

(i) LIGHT-LEVEL-

MAGNITUDE-MID-RANGE

(j) LIGHT-LEVEL-

MAGNITUDE-MINIMUM

(k) LIGHT-LEVEL-

MAGNITUDE-VARIANCE

Figure B.3: Feature visualisations
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(a) MAGNETIC-FIELD-

MAGNITUDE-HIGH-RANGE

(b) MAGNETIC-FIELD-

MAGNITUDE-LOW-MID-

RANGE

(c) MAGNETIC-FIELD-

MAGNITUDE-LOW-RANGE

(d) MAGNETIC-FIELD-

MAGNITUDE-MAXIMUM

(e) MAGNETIC-FIELD-

MAGNITUDE-MEAN

(f) MAGNETIC-FIELD-

MAGNITUDE-MID-HIGH-

RANGE

(g) MAGNETIC-FIELD-

MAGNITUDE-MID-RANGE

(h) MAGNETIC-FIELD-

MAGNITUDE-MINIMUM

(i) MAGNETIC-FIELD-

MAGNITUDE-VARIANCE

(j) ORIENTATION-X-MEAN (k) ORIENTATION-X-

VARIANCE

(l) ORIENTATION-Y-MEAN

(m) ORIENTATION-Y-

VARIANCE

(n) ORIENTATION-Z-MEAN (o) ORIENTATION-Z-

VARIANCE

Figure B.4: Feature visualisations
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Appendix C

Sensor Feature Distributions

Figures C.1, C.2, C.3 and C.4 show the distributions of sensor feature values as histograms. Each colour
represents a transport class. The important property in these histograms is for the distributions to vary
across the classes.

(a) ACCELEROMETER-

MAGNITUDE-HIGH-RANGE

(b) ACCELEROMETER-

MAGNITUDE-LOW-MID-

RANGE

(c) ACCELEROMETER-

MAGNITUDE-LOW-RANGE

(d) ACCELEROMETER-

MAGNITUDE-MAXIMUM

(e) ACCELEROMETER-

MAGNITUDE-MEAN

(f) ACCELEROMETER-

MAGNITUDE-MID-HIGH-

RANGE

(g) ACCELEROMETER-

MAGNITUDE-MID-RANGE

(h) ACCELEROMETER-

MAGNITUDE-MINIMUM

(i) ACCELEROMETER-

MAGNITUDE-VARIANCE

Figure C.1: Feature distributions
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(a) GPS-LOCATION-

ALTITUDE-DECREASING-

MEAN

(b) GPS-LOCATION-

ALTITUDE-GAIN-MAXIMUM

(c) GPS-LOCATION-

ALTITUDE-INCREASING-

MEAN

(d) GPS-LOCATION-

ALTITUDE-LOSS-MAXIMUM

(e) GPS-LOCATION-

DISTANCE-TOTAL

(f) GPS-LOCATION-

HEADING-CHANGE-RATE

(g) GPS-LOCATION-SPEED-

MAXIMUM

(h) GPS-LOCATION-SPEED-

MEAN

(i) GPS-LOCATION-SPEED-

MINIMUM

(j) GPS-LOCATION-SPEED-

VARIANCE

(k) GPS-LOCATION-STOP-

RATE

(l) GPS-LOCATION-

VELOCITY-CHANGE-RATE

Figure C.2: Feature distributions
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(a) GPS-SATELLITES-

SATELLITE-COUNT-MEAN

(b) GPS-SATELLITES-SNR-

MEAN

(c) LIGHT-LEVEL-

MAGNITUDE-HIGH-RANGE

(d) LIGHT-LEVEL-

MAGNITUDE-LOW-MID-

RANGE

(e) LIGHT-LEVEL-

MAGNITUDE-LOW-RANGE

(f) LIGHT-LEVEL-

MAGNITUDE-MAXIMUM

(g) LIGHT-LEVEL-

MAGNITUDE-MEAN

(h) LIGHT-LEVEL-

MAGNITUDE-MID-HIGH-

RANGE

(i) LIGHT-LEVEL-

MAGNITUDE-MID-RANGE

(j) LIGHT-LEVEL-

MAGNITUDE-MINIMUM

(k) LIGHT-LEVEL-

MAGNITUDE-VARIANCE

Figure C.3: Feature distributions
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(a) MAGNETIC-FIELD-

MAGNITUDE-HIGH-RANGE

(b) MAGNETIC-FIELD-

MAGNITUDE-LOW-MID-

RANGE

(c) MAGNETIC-FIELD-

MAGNITUDE-LOW-RANGE

(d) MAGNETIC-FIELD-

MAGNITUDE-MAXIMUM

(e) MAGNETIC-FIELD-

MAGNITUDE-MEAN

(f) MAGNETIC-FIELD-

MAGNITUDE-MID-HIGH-

RANGE

(g) MAGNETIC-FIELD-

MAGNITUDE-MID-RANGE

(h) MAGNETIC-FIELD-

MAGNITUDE-MINIMUM

(i) MAGNETIC-FIELD-

MAGNITUDE-VARIANCE

(j) ORIENTATION-X-MEAN (k) ORIENTATION-X-

VARIANCE

(l) ORIENTATION-Y-MEAN

(m) ORIENTATION-Y-

VARIANCE

(n) ORIENTATION-Z-MEAN (o) ORIENTATION-Z-

VARIANCE

Figure C.4: Feature distributions
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Introduction and Description of the Work

This project will investigate algorithms for infering transportation mode by implementing and comparing
two or more algorithms from the literature, using data collected with an Android smartphone. The
primary metric of interest in doing this will be the accuracy of the inferences made.

Being able to infer the mode of transport that a person is taking has several applications in the
context of ubiquitous computing. One such use is in estimating the personal energy footprint of the user
based on the mode of transport, number of people sharing and distance travelled.

As extension activities:

1. A new or a hybrid algorithm may be created and evaluated.

2. An application may be developed that uses whichever algorithm was found to be most appropriate
to give users an estimate of their transport energy footprint. This may be done by building on
the codebase from my UROP project “A personal energy meter”, resulting in a system capable
of tracking energy use due to buildings and transportation. Inferring the number of people using
shared transport would likely be beyond the scope of this extension.

Resources Required

An Android smartphone with GPS and 3-axis accelerometer. Use of the Android platform dictates that
the primary language used will be Java.

Starting Point

I have worked on a UROP project, gaining skills in Android development and software engineering. The
project may provide a codebase for the transport energy metering extension.

I am owner of an HTC Hero phone. In the event of this being lost, I would require a replacement
phone anyway and so would buy another. As I hope to borrow a G1 phone from the DTG in order to
assist data collection, I could also use this as a fallback.
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Substance and Structure of the Project

Collection of Sample Data

Test data will collected by writing an Android application that records GPS location at a frequency of
1Hz and accelerometer data at a minimum frequency of 10Hz, along with suitably accurate timestamps.
Ground truths will be recorded either by having a button in the application to trigger a log entry, or by
identifying segments at the end of each day by recalling the day’s events. Data will be collected for at
least the following: bicycle, bus, car, train and walk and will be in two stages:

1. Algorithm implementation

It will be important to get a small amount of test data early on so that I can begin implementing
the algorithms. For this I will record traces in and around Cambridge, not necessarily including
all transportation modes. This will also allow refinement of the tracer application for:

2. Algorithm evaluation

For a meaningful analysis a representative quantity of data will be required. It will be necessary
to collect data on a variety of routes and in a range of traffic conditions. To assist with this
volunteers will provide data by running the tracer application. I may be able to borrow a G1
phone from the DTG to lend to volunteers not in possesion of an Android phone.

Accurate ground truth records will be best obtained by having volunteers run the application for
relatively short periods of time. It may be necessary to allow for ’warm up’ time by discarding
the first hour/day of data.

Reddy et al. [1] tested with a total of 20 hours of data collected by 6 people. Zheng et al. [2, 3]
collected data from 45 people over 6 months covering 20,000km in 15 cities for [2] and for [3] collected
data from 65 people over 10 months covering 30,000km in 18 cities.

There is a bug [4] in Android 2.1 that prevents applications receiving accelerometer data when the
screen sleeps. At the time of writing (October 17, 2010), the Android Device Dashboard versions page
[5] reports 40.4% of active devices are running 2.1 and 33.4% running 2.2. The latest official version
for the HTC Hero is 2.1; in my case I’ve worked around this by running an unofficial 2.2.1 release.
Three provisional volunteers also have HTC Hero phones; they may a) be reluctant to change software
configuration and b) require assistance installing it. There is a work around for 2.1 [6] though I’ve not
yet tested it.

Table D.1 shows an estimate of the storage requirements for tracing. With 100MiB being the best
case the chosen encoding must be space efficient. The non-(GPS location or accelerometer) data may be
recorded in anticipation of the first extension activity.

input value
size/bits

values/sample samples/second data + timestamp
bits/second

accelerometer 32 3 40 3840 + 2560
orientation 32 3 4 384 + 256
magnetic field 32 3 4 384 + 256
light level 32 1 4 128 + 256
GPS location 64 6 (longitude, latitude, al-

titude, bearing, speed, ac-
curacy)

1 384 + 64

GPS satellites 32 5 (PRN, SNR, azimuth,
elevation, used in fix)

variable - max. 255, as-
suming average of 10

1600 + 0

total 10496

Table D.1: Sensor data bitrate estimate - approx 100MiB/day (assuming no overhead)

Possible log formats are XML, CSV, custom text and custom binary. Issues to be considered are
space and processing requirements; there is a compromise to be made between low storage requirements
and avoiding excess battery drain due to log generation and compression (as may be required with XML).
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General logging strategy may be to have a separate log file for each sensor type, and have the name
of the file contain all necessary metadata, i.e. device identifier, sensor type and start time. Ground
truths will be logged in separate files and the storage requirement is negligible. A new file will be started
everytime: a) the tracer service starts b) sensor data becomes available having previously ceased c) the
current log file size reaches some threshold.

Creation of Test Framework

When implemented the inference algorithms will be tested and analysed on a desktop machine, not on
the Android platform; inference will not be realtime. Indeed, some algorithms (e.g. [2, 3]) are not suited
to realtime analysis due to the segmentation preprocessing step. Testing the algorithms on a desktop
machine should increase productivity by avoiding on-phone debugging.

Comparison of Inference Algorithms

Preliminary research into inference algorithms yields three possibilities. In all three papers multiple
classification and enhancement algorithms were tested. All found that decision trees and discrete hidden
Markov models (DHMMs) resulted in the highest accuracy, and so in the following summary only the
accuracy achieved by each paper using these algorithms is considered. Table D.2 summarises their
differences.

[1] uses GPS and 3-axis accelerometer data to infer transportation mode (regardless of phone ori-
entation) using features such as force vector magnitude frequency coefficients below 10Hz. The features
are input to a decision tree and the resulting inferences are enhanced using a DHMM (considering the
likelihood of transitioning from one mode of transport to another, segment by segment). The features
are created from constant length segments of 1 second which overlap by 0.5 seconds.

[2] uses only GPS data, but splits the traces first by marking each data point as either walking or
non-walking and then growing these points into segments. Segments are thus much longer than those of
[1] but still the best inferences were made by use of decision trees and DHMMs. However, the features
used are significantly different.

[3] builds on [2] by introducing a spatially indexed database of change points, and using this data
to further enhance inferences based on the likelihood of transitioning from one mode of transport to
another at the change point in question.

algorithm [1] [2] [3]
input 3-axis accelerometer, GPS GPS GPS, changepoint data
segment
features

variance (accelerometer),
energy (accelerometer),
sum of FFT coeffecients
0.5-10Hz (accelerometer),
speed (GPS)

length, mean velocity, ex-
pectation of velocity, co-
variance of velocity, top
three velocities, top three
accelerations

length, ith maximum ve-
locity, ith maximum ac-
celeration, average veloc-
ity, expection of velocity,
variance of velocity, head-
ing change rate, stop rate,
velocity change rate

structure fixed length segments →
decision tree → discrete
hidden markov model

walk/non-walk segments
→ decision tree→ discrete
hidden markov model

walk/non-walk segments
→ decision tree → dis-
crete hidden markov
model → graph-based
post-processing using
changepoint data

accuracy 98.8% of segments cor-
rectly identified

68.5% of distance cor-
rectly identified

76.2% of distance cor-
rectly identified

notes test data was not entirely
realistic (volunteers were
told to minimise idling)

requires large training set

Table D.2: Comparison of inference algorithms
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To give a baseline to the comparison between algorithms I may implement a simple inference algo-
rithm. It might for example split traces into fixed length (e.g. five second) segments and classify each
based on its average speed.

Automated transport Energy Metering

In the Energy Metering extension activity, analysis may or may not be realtime depending on the nature
of the selected inference algorithm.

Support

Backup and Revision Control

Work will be done on my own machine. All important files are backed up daily via a cron job using
rsync over SSH to a remote machine. Manual backups are made to a flash drive (approximately weekly)
that I carry at all times. In the event of hardware failure the failed component(s) would be replaced. In
the worst case the PWF machines in the Intel lab could be used (though I would have to boot my own
OS in order to do Android development).

In terms of revision control, Subversion would be sufficient for a single person project such as this.
However, Git provides everything required and more so I will take this opportunity to use a new tool
and choose Git.

Supervision

Simon Hay and Mattias Linnap will co-supervise the project. Simon is planning to submit his PhD and
so may not be around for the full duration of the project. In this case, Mattias will take over.

Success Criterion

• To have written a data logging application for Android that records GPS location at a minimum
frequency of 1Hz and accelerations in three dimensions at a minimum frequency of 10Hz, along
with the time.

• To have collected representative GPS and accelerometer data with mode labels for the follow-
ing transportation modes: bicycle, bus, car, train and walk. This may be just in and around
Cambridge or include other locations.

• To have implemented two or more transportation mode inference algorithms, ran them on the
data collected and compared quantitatively the accuracy of the inferences made.

• (Extension) to have implemented and evaluated the accuracy of a third inference algorithm.

• (Extension) to have integrated whichever of the compared algorithms is determined to be most
suitable with the codebase of the UROP project and implemented functionality to give users an
estimate of their personal transport energy footprint over time.
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Timetable and Milestones

Preliminaries Oct 7th - 20th (Mich. w. 1-2, project w. 1-2)
Determining project scope, writing proposal.
Milestones: Proposal completed and submitted.

Test data application Oct 21st - Nov 3rd (Mich. w. 3-4, project w. 3-4)
This will record GPS location and accelerometer data.
Milestones: Tracer application complete.

Collecting test data Nov 4th - 17th (Mich. w. 5-6, project w. 5-6)
As much data as can be will be collected during term time, but it may be necessary to collect more
during the Michaelmas vacation, particularly for car and train journeys. Volunteer data collection will
run parallel to other tasks.
Milestones: Sample data collected.

Implementing common code Nov 18th - Dec 1st (Mich. w. 7-8, project w. 7-8)
This will include framework type code (e.g. creating a skeleton pipeline, in which the algorithm specific
inference modules are placed), as well as code for extraction and preprocessing of features.
Milestones: Theory fully understood and program structure detailed.

Implementing inference algorithms Dec 2nd - 15th (Mich. Vac. w. 1-2, project w. 9-10)
Likely to be [1] and [2].
Milestones: Two inference algorithms implemented

Testing inference algorithms Dec 16th -29th (Mich. Vac. w. 3-4, project w. 10-11)
Testing itself should be quick in that the data will have already been collected; reacting to the test results
(i.e. fixing bugs) may take longer.
Milestones: Comparison of algorithms completed

Extension application Dec 30th - Jan 12th (Mich Vac w. 5-6, project w. 12-13)
This will vary in scope depending on time remaining.
Milestones: Inference system integrated with UROP codebase

Extension algorithm Jan 13th - 26th (Mich. Vac. w. 7 - Lent w. 1, project w. 14-15)
This will vary in scope depending on time remaining.
Milestones: An additional algorithm implemented and compared

Evaluation Jan 27th - Feb 9th (Lent w. 2-3, project w. 16-17)
This will be an evaluation of two things:

1. The algorithms will be compared, and the product of any extension activities will be evaluated.
2. The success of the project in terms of time management and achieving goals will be evaluated.

Milestones: Progress report written and submitted (Fri 4 Feb), progress presentation written and Intro-
duction, Preparation, Implementation and Evaluation chapters completed

Writing the Dissertation Feb 10th - March 23rd (Lent w. 4-5, project w. 18-19)
It is my intention to write this in parallel to working on the actual project so a relatively small amount
of time will be required to finalise it.
Milestones: Conclusion written, Dissertation complete.

Overflow Feb 10th - March 23rd (Lent w. 6 - Easter w. 3, project w. 20-32)
A buffer zone between the final timetabled task and the deadline, in anticipation of exams.
Milestone: Submission of Dissertation (Fri 20 May)
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